.[. _

AD-A271 5 .
Y RDA-TR 43.0005.001 A llllflllllllllllllll N!Il! i ®
: Final Technical Report

MJO: 0043

&y

Neural Network Studies

Gregg Wilensky, Narbik Manukian, Joseph Neuhaus, Natalie Rivetti

Logicon RDA D T €,
July 1993 ELEC o o7
= 0CT27 1993 3 A
= °
=w A
= | n
= N ARPA Order Number: 7006
=W Contract Number: N00014-89-C-0257
= gl Contract Effective Daie:
=00
w0

: 15 September 1989
Contract Expiration Date: 31 July 1993
Principal Investigator: Gregg Wilensky

(310) 645-1122, Extension 369

This document has been approved |
for public release and sale; its

distribution is uniimited

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied of the Advanced
Research Projects Agency or the U.S. Government.

LOGICON
RDA

LOGICON RDA » POST OFFICE BOX 92500 » LOS ANGELES, CALIFORNIA 90009
6053 WEST CENTURY BOULEVARD =

LOS ANGELES, CA90045 s TELEPHONE: 310 645-1122

0% 10 6 143

- Best
Available
Copy .

»;

o

»
*
RDA-TR-43-0005-001 .
LY,
Final Technical Report ’
&
MJO: 0043
»
Neural Network Studies
]
Gregg Wilensky, Narbik Manukian, Joseph Neuhaus, Natalie Rivetti
Ac:e o For k
. NTIS CRA&I
Logicon RDA B Tag 5)1’
July 1993 | Uren ouied i
cJoclnoanon o
e e
e
ARPA Order Number: 7006 . RLJ«'T,W Coves
Contract Number: ~ N00014-89-C-0257 T f‘.“;[T
Contract Effective Date: 15 September 1989 Ot f Somcial (]
Contract Expiration Date: 31 July 1993
Principal Investigator: Gregg Wilensky A
(310) 645-1122, Extension 369 (/! |
>

'DTIC QUALITY i —wiow @

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied of the Advanced »
Research Projects Agency or the U.S. Government.

LOGICON

RDA ’
LOGICON RDA s POST OFFICE BOX 92500 = LOS ANGELES, CALIFORNIA 90009

6053 WEST CENTURY BOULEVARD = LOS ANGELES, CA90045 s TELEPHONE: 310 645-1122

L)

]
*
®
]
&
L
Forward ’
This report was produced for the Office of Naval Research (ONR) and the Advanced Research
Projects Agency (ARPA) in fulfillment of the final report requirements under Contract Number
NO00014-89-C-0257, Section B, Item 0002 and Exhibit A (Basic Contract) , Item 0004 and Exhibit »
B (Option I), and Item 0006 and Exhibit C (Option II).
» |
»
]
]
»
]
[® [° ® [[® ® L J

~

o

Table of Contents

TOPIC oottt e e e e e et Page
Introduction and SUMMATYcccooiiiiniin e 1
Overview of Neural Network Theoryc.occoveevereniininnnceiieeciecenens e 2
Scaling of Back-Propagation Trainiing Time to Large Dimensions..........ccccocviieins 15
Classification and Function Fitting as a Function of Scale and Complexity 23
A Comparison of Classifiers

The Neural Network, Bayes-Gaussian, and k-Nearest Neighbor Classifiers...... 37
Fuzzy ILogic and the Relation to Neural Networksc.ccoocviceiinnnnii s 49
The Reduced Coulomb Energy (RCE) Classifiercccoeeiceniviiininiiiicn 61
Radial Basis APPrOXimMatiOns.......ccccoveieiirouererirreestenesreent e eertesaaessensssteseaseeasesresssesesane 71
Lynch-Granger Model of Olfactory Corex it 75
Multi-parameter Process Control with Neural Networksc.c.occoccrviiiiniienancnnnnn 81
Detection of Ocean Wakes in Synthetic Aperture Radar Images with Neural
INEEWOTKS ... cneieceireteeitee e etie st e e sseeecee e et e ae s saenra s asseenee st anneantans e saantaneasseessabeeetenseonnesaeenses 95
The Projection Neural NEetworkcccoccciviiiinnniniiiinnce e 105

@

o]

A J

FINAL REPORT 1 Contract N00014-89-C-0257

Introduction and Summary

Research at Logicon RDA in neural networks under the ARPA contract includes
three main areas: theoretical research in the fundamentals of neural networks,
applications of neural networks to practical problems of interest, and the development of
new and more powerful neural networks and techniques for solving these problems. The
papers which follow are a compendium of our research in these areas.

The theoretical studies include an overview of the basic useful theorems and
general rules which apply to neural networks (in “Overview of Neural Network Theory”),
studies of training time as the network is scaled to larger dimensions (in “Scaling of
Back-Propagation Training Time to Large Dimensions”), an analysis of the classification
and function fitting capability of neural networks (in “Classification and Function Fitting
as a Function of Scale and Complexity”), a comparison of Bayes and k-nearest neighbor
classifiers to neural networks (in “A Comparison of Classifiers: The Neural Network,
Bayes-Gaussian, and k-Nearest Neighbor Classifiers™), an analysis of fuzzy logic and its
relationship to neural network (in “Fuzzy Logic and the Relation to Neural Networks™),
an analysis of the Reduced Coulomb Energy (RCE) network (in “The Reduced Coulomb
Energy Classifier”), radial basis functions (in “Radial Basis Approximations”), and the
Lynch-Granger models (in “Lynch-Granger Model of Olfactory Cortex”).

The application of neural networks focuses on practical problems such as the
prediction of the outcome in the growth of solar cells as a function of the controlling
parameters of the process (in “Multi-parameter Process Control with Neural Networks™)
and the detection of wakes in radar images of the ocean surface (in “Detection of Ocean
Wakes in Synthetic Aperture Radar Images with Neural Networks” , which was developed
under an IR&D project). New theoretical and practical developments include the
development of a successive approximation technique for handling sparse data sets and
including known information into a network (in “Multi-parameter Process Control with
Neural Networks”) and the application of the Logicon Projection Network™ (developed
by us under an IR&D project) to the problem of character recognition in order to
demonstrate the speed-up in training time over traditional networks such as back-
propagation (in “The Projection Neural Network™).

Our research has led to a better understanding of the strengths and weaknesses of
neural networks (NN’s). We have shown, through empirical and analytic studies, the
feasibility of scaling up to large problems. And we have developed networks capable of
solving such large problems. We have shown the ability of NN’ s to generalize well even
when trained on a small set of data in comparison with the number of free parameters
available to learn. And we have demonstrated this in a practical application to process
prediction. Furthermore, we have compared the popular backpropagation NN to several
other neural networks (radial basis functions, Reduced Coulomb Energy, Adaptive
Resonance Theory, Logicon Projection Network™, Lynch-Granger Model), fuzzy logic
and statistical techniques.

Over the past several years many researchers, including ourselves, have
demonstrated the utility of neural network algorithms for the solution of problems for

FINAL REPORT 2 Contract N00O14-89-C-0257

which training on real data is essential. NN approaches form one extreme of a spectrum
of algorithms. At the other extreme are physical models in which analytic formulae or
equations are available to adequately describe the system to be solved. Fuzzy logic and
expert systems form an alternate approach in which the physical knowledge is presented
in the form of rules. An important direction for future research is the integration of all
three approaches. This should lead to techniques which can incorporate the physical
knowledge with training on experimental data to incorporate effects not modeled or to
learn values of unknown narameters.

Another area prime for future research is the development of NN’s capable of
solving useful dynami~ problems. The current algorithms for solving such problems are
susceptible to getting stuck in local minima far from the desired solution. Careful design
of the network structure tuned for each particular problem is likely to lead to efficient
solutions.

In the field of intelligent image recognition careful tailoring of the network to the
problem is likely to have an effective outcome. For image preprocessing, feature
extraction and classification NN’s offer the possibilities for construction of parallel
algorithms which integrate key features necessary for the effective application of NN’s to
automatic target recognition (ATR) as well as other image recognition tasks: 1)
insensitivity to local distortions as well as global (translation, rotation) transformations of
images, 2) a design which facilitates detection of images based on a collection of features,
only a portion of which may be present in any given image, and 3) the ability to train the
network to learn the best features necessary for image recognition. Future research in this
area is likely to yield large benefits in performance for image recognition systems.

Overview of Neural Network Theory

1. Classification of Neural Networks

Many neural networks can be classified into two basic classes: 1) those that divide
the input space into open regions (usually hyperplanes); 2) those that divide the space
with closed regions (hyperspheres, city block volumes, etc.). The first type includes
standard perceptron-like nets which are usually feedforward nets trained by
backpropagation. These suffer from slow training times because of the inability to
initialize the weights close to the desired solution. On the other hand they have the
advantage of being trained by error minimization, so that the network outputs will, given
sufficient training data, approximate the Baye’s conditional probabilities. The second
type of network includes hypersphere classifiers, such as RCE, ART, and leaming vector
quantization. These networks do not ensure error minimization. On the other hand they
learn quickly because each hidden node can be initialized to represent a prototype which
encloses a decision region in the input space. This ensures that the network is near a
good solution. Logicon’s Projection Network™ combines both types of networks into
one. It can initialize open or closed prototypes and still train by error minimization.

5,

"

+ INAL REPORT 3 Contract N00014-89-C-0257

2. How does one choose which network to use?

Supervised or Unsupervised: If the data set is classified choose a supervised
network or perhaps first use an unsupervised network to cluster the data and reduce the
dimensionality and then use a supervised network.

For a supervised network, one must choose between feedforward or feedback
nets with many variations in training style, counterpropagation net, cascade correlation
net, neocognitron, Reduced Coulomb Energy (RCE) net, Adaptive Resonance nets (ART,
ARTMAP), Boltzmann machine, Bidirectional Associate Memory (BAM), Brain State in
a Box net, Hopfield net. Radial Basis Function nets such as the Probabilistic Neural Net
(PNN), Learning Vector Quantization (LVQ), the Logicon Projection Network. This is
not a complete list but does include most of the popular networks. They can be
functionally grouped together in the following manner (note that there is some overlap of
function though only the dominant mode of use is listed for the most part):

Optimization problems such as traveling salesman:
Boltzmann machine

Autoassociation, pattern completion:
Brain State in a Box
Hopfield net
Bidirectional Associative Memory
Boltzmann machine

Feedforward nets, classification problems, function fitting, control
» Feedforward nets, usually hyperplane decision boundaries (error minimization)
Backpropagation & variants (slow training)
Cascade correlation (faster training)
Logicon Projection Network™ (faster training)

« Prototype formation, (no error minimization, tend to be fast training)
Learning vector quantization
RCE
ART
Counterpropagation
Logicon Projection net

Recurrent Backpropagation, dynamic problems, capturing contextual information,
robotics, control

A general rule is to use the simplest network which will solve a problem. This
accounts for the widespread use of backpropagation training. For most problems it can
be adjusted to give a reasonable solution. When training speed is a major concern but
error minimization is not, one may choose one of the prototype formation nets. The
projection net forms prototypes and also minimizes the error.

An example

As an example, suppose one wishes to design an experiment to take a set of data
from various sensors and classify some objects. Perhaps the objective is to discriminate a
truck form a car based on seismic measurements. Let us say there are 100 sensor

FINAL REPORT 4 Contract NOOU14-82 0 ued?

measurements so that the dimension of the input space for our classifier is 100. The first
question that arises is: how much data should be collected ? In order to estimate this, one
must know how complex the problem is, something that in general cannot be found
except by attempting to solve the classification problem. In practice, one uses past
experience in solving similar problems as a guide for estimating the amount of data
required. Ideally, one would use an iterative approach in which an initial data set is used
to design and test a classifier and then the utility of increasing the size of the data set is
studied.

Suppose we have decided to collect 200 data points, each point representing 100
inputs and one output probability (0 for car, 1 for truck). We must next decide the neural
network to use. If we are interested in a fast but not necessarily optimized solution we
might use a hyperspherical classifier, perhaps ART! or RCE. Such classifiers work well
when the data falls into separable clusters for each in the input space. On the other hand,
if we have reason to believe that the problem is not easily solved with clusters of
prototypes or if we want to ensure error minimization to optimize the solution, we may
use some modification of backpropagation training of a feedforward net. Assuming the
latter, we must decide on the number of hidden layers and nodes in each layer.

There are no good heuristics for choosing the number of hidden layers. One can
rely on Cybenko’s result that one hidden layer is sufficienrt to map any bounded
continuous function. But for some problems more layers may lead to shorter training
times or the avoidance of local minima. For simplicity, let us assume one hidden layer.
The number of nodes in this layer must be sufficient to match the complexity of the
problem. The best procedure is to train and test the generalization performance (on a
different data set) as one varies the number of hidden nodes. There are indications that
more hidden nodes leads to shorter training times (measured in terms of number of
training epochs)2. If one is willing to accept a generalization error of 0.1, then one knows
that ny/ng should be roughly 0.1, if the network is trained for an infinite time. For this
error, with a single hidden layer net of nh hidden nodes, the condition 0.5 nj = 0.1 cannot
be satisfied. If it could (i.e. if we had at least 5 times the available data) we would use
this to set a rough bound on the number of hidden nodes. We might decide to use this
rule to guide us in choosing more data. On the other hand, the typical situation is that this
is all of the available data. Even though we cannot satisfy the rule of thumb, the data set
may offer useful information. We do know from this analysis, however, that the neural
net should not be trained to completion. Careful attention must be paid to the
generalization performance as training proceeds and the network should be stopped when
this performance is optimum. Alternately, another regularization scheme such as weight
decay can be used.

3. Rules of Thumb

Neural networks learn by example. Hence, to train a network (or any other
classifier or function interpolator) one must determine the number of training data points

1 Note that ART is not exactly a hyperspherical classifier but the gist of the algorithm can be considered
just that.

2 s. Fahlman, "An Empirical Study of Leamning Speed in Back-Propagation Networks”, CMU-CS-88-162,
September 1988.

FIIAL 2EPCRT 5 Contract N0OOO14-89-C-0257

needed to learn a problem to a given level of accuracy. While there are few general
results, there are some results which suggest the following rule of thumb:

The generalization error will be some simple function of the number of
parameters , nyw, in the network (number of weights plus number of biases) divided by the
number of training points, nd.

e = nw/ng.

Tor a given number of data points and some desired error, a good rule of thumb is then to
choose the number of parameters in the network according to the above formula. In
practice, one can often get by with many more parameters than this. This anises because
the number of effective parameters is actually smaller than ny. By stopping training
before completion (as for instance determined by the performance on a test validation
data set) or by adding a weight decay term to the error function one introduces an implicit
or explicit regularization3. Thus a neural network can begin with a larger number of
parameters than that suggested by the rules of thumb described below and still avoid
overfitting. Ry stopping the training process at a time at which the validation error is at a
minimum, one may obtain a good generalization.

On the other hand, in order to estimate how many data points are needed one
needs to understand the complexity of the problem as measured by the number of
weights required to learn the training data. This is why neural nets (or any other method)
require a lot of judgement in order to solve a problem. One must understand the
complexity of the problem in order to choose enough data points and to estimate the
number of parameters needed in the net. On the other hand, one cannot in general
determine the complexity except by attempting to train the neural network and then
judging its performance.

4. How Do NN’s Fit with Statistical Estimation Theory?

The results of statistical estimation theory are generally valid for arbitrary
parametric functional forms. Neural networks provide an example parametrization of a
general function. The advantages of neural nets are that 1) they offer the capability of
fitting any bounded continuous function all in a simply parametrized form and 2) they
provide efficient and flexible training algorithms to learn the parameters by example.

Statistical methods usually begin by predicting the probability, p(xic), that
describes the distribution of data within class c. Bayes’ rule is then used to obtain the
probability of interest, p(clx), the probability, given a data point x, that it should be
classified as class c:

plclx) = p(xic) pe)[2 p(xic) p(c)].

Neural nets, on the other hand usually operate by directly predicting the classification
probabilities p(clx). They are therefore more direct.

3 L. Ljung, J. Sjoberg, "A System Identification Perspective on Neural Nets”, 1992.

FINAL REPORT 6 Contract N00O14-89-C-0257

5. NN’s can learn to approximate the Bayes’ conditional probabilities:

The proof of this statement hinges on two conditions: 1) that the neural network
be trained by error minimization and 2) that enough training data is available to sample
the probability distributions.

Consider a two-class classification problem. Let the network be trained to output
a desired value of 1 for class 1 and O for class 0. Then the error which is to be minimized
1S

E = Z(c=1) (1-p}2 + Z(c=0) (0-p)? ,

where p is the neural net output and the sum over all data has been partitioned into the
two classes. If a statistically significant sampling of data is available, the sums can be
approximated by integrals over the probability distributions:

E = Jdx [p(11x)p(x) (1-p)2 +p(01x) p(x) p?].

This can be rearranged to give

E = Jdx p(x)[p(11x) (1-p)2 +p(O1x) p2].

The point x is either class Q or it is class I, i.e. p(lix) + p(0ix) = 1. Therefore,

E = Jdx p)[(p(11x)-p)2 +p(11x) (1-p(l1x))].

The second term is independent of the neural network and is a minimum error determined
by the overlap of classes 0 and 1. The first term contains the only reference to the neural
network. Hence the process of adjusting the neural network parameters to minimize the
error is equivalent to adjusting the output of the network, p, to approximate the Bayes’
conditional probability p(1 | x).

6. What is the role of additional hidden layers?

In a standard back-propagation network, the neurons in the first hidden layer form
hyperplanar boundaries in the original input space. If the network only has one hidden
level, then the network output is a superposition of sigmoidal surfaces. The hyperplanar
boundaries must be carefully placed such that their constructive and destructive
interference will yield the correct result. One advantage of an additional hidden layer of
neurons is that this interference is more easily avoided. As an example, two nodes in the
first hidden level can combine to give a Gaussian-like response to one input. This can be
repeated, using two nodes for each input dimension. A single second layer neuron can
then sum up all of these nodes to form a Gaussian-like response in N dimensions. Any
bounded and continuous function can be built up of a combination of such bumps. These
bumps, or radial basis functions, are localized and hence can be designed not to interfere
appreciably with neighboring bumps. The final output neuron sums up the radial basis
function-like responses of the second hidden layer neurons.

FINAL REPORT 7 Contract NOOO14-89-C-0257

Additional hidden levels may provide additional layers of abstraction, but there
are few examples ir the literature to illustrate this. Training times tend 1o increase as one
adds hidden layers. A better alternative to the addition of layers to a network is a more
intelligent choice of network structure. For example, a neural network can be constructed
as a feature detector to preprocess the data. Additional layers can then be added to
classify this processed data

7. Why Use Different Error Functions?

Or.c of the main problems which slows down BP training is the saturation of the
sigmo'd where the derivative of the sigmoid is close to zero:

do/dw = ¢ (1-0)

approaches 0 as ¢ approaches 0 or 1. The problem is that the derivative of the error with
respect to the weight is proportional to the derivative of the sigmoid:

dE/dw =d/dw {(05Z([p-pJ?} = Z[p-p'] dp/dw,

where p is the neural network output and p’ is the desired value. The sum is over all
output nodes and training data. dp/dw always contains derivatives of sigmoids.

One solution to this difficulty is to replace the error function, which is normally
chosen to be quadratic in the difference of the NN output from the desired output, by
some other function whose derivative does not vanish as rapidly. An example is the
entropic error measure:

E=ZZ[plogp+ (l-p) logl/(1-p)].
This error vanishes when the neural network output p equals the desired output p', as it

should. The derivative with respect to the upper level weights now contains terms of the
form

dp/dw /[p (1-p)] .
The derivative of the sigmoid which comes out of the numerator now cancels the

denominator. Thus, the final layer of weights do not get bogged down from saturation of
the output level nodes.

8. Regularization

Regularization is the process of adding smoothness constraints to an
approximation problem?. An example of such a constraint is the addition of a term to the
error which is to be minimized proportional to an integral of the squared curvature

471 Poggio and F. Girosi, "A Theory of Networks for Approximation and Learning”, A. 1. Memo No.
1140, Artificiai Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

FINAL REPORT 8 Contract NO0OO14-89-C-0257

(second derivative) of the function to be fit. For one-dimensional functions, minimizing
an error function containing this term and the sum squared deviations of the data from the
predicted function gives rise to a cubic spline fit. The constant of proportionality for the
regularization term controls the compromise between the degree of smoothness of the
solution and ihe closesness to the data.

An alternate regularization term for a neural network is a weight constraint which
might prevent the weights from growing too large (large weights can give rise 10 steep
sigmoids and hence allow the fitting of detailed structure). This can be accomplished
with the addition of a term to the error which is quadratic in the weights. This is often
referred to as weight decay, since upon gradient descent, an additional term -gw appears
in the training rule which tends to decay the weights toward 0.

Also, neural networks have a built-in, implicit, regulanzation procedure: simply
stop training before completion. Normally one stops at a point which minimizes the
generalization error (the error obtained on a test data set independent frem that on which
the network has been trained).

9. Why does backpropagation plateau out?

Backpropagation can plateau out or get stuck in bad local minima for several
reasons. If the error surface is very shallow, the gradients are small and the descent to a
minimum will be slow. This region of very slow progress shows up as a plateau in the
error vs training time curve. [f one watches the motion of the decision surfaces
(hyperplanes) as one trains, one typically sees one hyperplane being brought into play at a
ume. Rapid training occurs after a hyperplane has gotten close to the right position and
amplitude. Training then slows down significantly as a new hyperplane, which is
typically far away from where it should be, begins creeping in.

Plateaus often occur when the sigmoids are saturated. In other words, the
hyperplane is so far away from where it should be that the input to a node is very large in
magnitude. The derivative of the sigmoid is then very close to one and so the gradient of
the error with respect to the weights and hence the weight change will be small.

One does not in general have a way of knowing whether or not one is in a local
minimum or a plateau. Assuming that one has checked that the sigmoids are not
saturated, one could still have a flat error surface or bad local minima because of the
complexity of the problem.

10. Scaling Issues

The neural network structure has been shown to reduce the number of
computations required for calculating the gradient of the error. A separate issue is the
number of iterations needed for a gradient descent calculation to reach an error minimum.
There are few theoretical results along these lines. because the number of training
iterations required Ny is very dependent upon the nature of the problem to be solved. For

some problems, such as the separation of two multidimensional Gaussian distributions,

FINAL REPORT 9 Contract N00014-89-C-0257

the number of iterations scales linearly with input dimension. Furthermore, Ny tends to
decrease as the number of weights is increased for a fixed input dimension (i.e. the
number of hidden nodes is increased) because there is a greater probability that the
hyperplanes will be near desired positions. Other problems, such as the less physical N-
dimensional parity problem are known to require an exponentially increasing number of
iterations to train as the input dimension is increased. On the other hand, these methods
apply to the simple backpropagation training algorithm. More sophisticated
modifications of the algorithm have been developed which dc not suffer fron: long
training times for high-dimensional problems.

11. Theoretical Results

The following four results are the broadest in scope.

1. NN outputs are estimates of Bayes a posteriori probabilities when trained to minimize
squared error or cross entropy 5. Example: If an output node is trained to equal 1 for class
1 inputs and to equal O for class 0 inputs then after training on a statistically significant
sample of data the values of the node will in general lie between O and 1 and will
approximate the probability p(c | x) that input x should be classified as class c.

2. Cybenko’s Theorem$,” : A feedforward network with sigmoidal nonlinearities and
one hidden layer of nodes can approximate arbitrarily well any continuous bounded
function. It can also approximate some discontinuous functions, provided that the
discontinuity is relatively benign, e.g. a step function can be approximated but a fractal
function can not.

3. A fully recurrent network is shown to be able to approximate arbitrarily well a
dynamical system®. That is a network with n+m nodes is capable of reproducing a
differentiable function of time y(t) (where y is an n dimensional vector) over a bounded
time interval. m is a number greater than or equal i0 the number of time steps for which
one wants to resolve the function.

4. An additive fuzzy system can approximate any continuous function on a compact
domain to any degree of accuracy®. The fuzzy system approximates the function by
covering it with fuzzy patches where each fuzzy rule defines a patch.

The remaining results are rather specific in the assumptions and do not
necessarily hold true for backpropagation trained nets in general.

5 M. Richard, R. Lippmann, "Neural Network Classifiers Estimate Bayesian a posteriori Probabilities”,
m ion, v. 4, 1991, pgs. 461-483.

6 G. Cybenko, "Approximations by Superpositions of a Sigmoidal Function”, Mathematics of Control,
Signals, and Systems, v. 2, 1989, pgs. 303-314,.

7 K. Hornik, M. Stinchcombe and H. White, 'Multilayer feedforward nctworks arc universal
approximators”, Neural Networks, 1989, pgs. 2-5, 359-366.

8 L. K. Li, "Approximatinn Theory and Recurrent Networks”, ICNN 92 [1, 1992, pgs. 266-271.

9 B. Kosko, "Fuzzy Function Approximation”, [JCNN 1992 I, 1992, pgs. 209-213

FINAL REPORT 10 Contraz; N0O0014-89-C-0257

This following result is bascd on the Vapnik-Chervonenkis (VC) dimension, a
measure of the capacity of a network. The VC dimension of a network is the largest
number of points that can be shattered by the network, i.e. the number of possible ways of
dividing the input points into two classes. For linear thresholding neurons, the VC
dimension is shown to be at least as large as the number of weights in the network for a
large number of hidden nodes.

5. Under certain broad conditions, the generalization error e of a learning system with
VC dimension D trained on np random examples of an arbitrary function will be no
worse than a bound of the order of D/np (with high confidence)!?. While this gives a
bound, it does not indicate what the average generalization error will be, and it may be
too pessimistic in many cases.

6. In a network with nw independent parameters (weights and thresholds), the average
predictive entropy (-log(1-error)) can be shown to converge to 0 as nw/np for large np
where np is the number of training datal!. The result holds generally for any learning
machine, not just neural nets. When the error is small:

error = nw/np,

The proof of this depends on the important and probably invalid ass:mption that
the probability of reaching any weight configuration is equally likely. This is fine if
one’s training algorithm simply jumps randomly from one set of weights to another until
it reaches a solution. But it is probably not true with backpropagation gradient descent
training.

The generalization error made by any machine independently of its architecture
(including neural networks) is related to the number of training points as a power law:

error ~ npP

If there is one and only one possible setting of the adjustable coefficients of the
machine, i.e. the weights of the neural network which give the “correct” solution for
every possible input, and if the training data is free of noise, i.e. it always knows the
correct answer, then p=1 (case A). Then the proportionality constant is equal to the
number of adjustable coefficients nw, so that

error = nw/np,
which is the Vapnik-Chervonenkis (VC) upper bound.
If the set of possible combinations of nn weights which correctly solves the

problem has a volume of nonzero measure in weight space, and again, the training data is
free of noise, then p=2 (case B). If there is one and only one possible set of correct

10 £ Baum, D. Haussler, "What Size Net Gives Valid Generalization?", Neural Computation, v. 1, 1989,
pgs. 151-160.

11§ Amari, "Universal Property of {eaming Curves under Entropy Loss”, BCNN 1992 11, 1992, pgs. 368-
373.

. 'R

R

re

FINAL REPORT i1 Contract N00O14-89-C-0257

weights as in A but the training data is noisy so that sometimes the network is trained
with an incorrect answer, then p=1/2 (case C). Finally, if the correct answer is itself
noisy or stochastic so that the desired output for each input point is determined
probabilistically, then p=1 (case D), but the error decays asymptotically to a nonzero
value.

In case A, since the dependence of the proportionality constant on the number of
weights is known, the expression for the error can be inverted to determine the bounds on
the number of required hidden nodes or training data points to achieve a tolerable error.
For example, if the tolerable error is e, then we need a number of weights equal to
Ny =¢np.

This expression can also be derived through another approach: Each hidden layer
node is connected to n input nodes and therefore draws a hyperplane in n dimensions
which can pass through any n distinct points. In other words, each neuron can exactly fit
n data points. But, if every point is fit exactly in training, the generalization will be poor.
Therefore, the number of weights should be less than the number of training points so
that nw < np .

7. For a linear net with no hidden units, analytic results can be derived for the
generalization error as a function of training timel2. If the initial weights are sufficiently
small the generalization error has a unique minimum, corresponding to an optimal
training time. More generally there are at most n minima for a net with n inputs and n
outputs.

8. For a net with no hidden units, n inputs and one output, and whose inputs and weights
take on only the values +1 and -1, perfect generalization occurs with some probability if
the number of data points is greater than an. (There are several claims that a ranges from
1.24 10 2.0)13 . The probability goes to 0 as n approaches infinity. Perfect generalization
means that given a set of np data points generated from a known neural network, another
neural network trained on this data will converge to the exact same weights as the
original network.

While this result is not very useful as it stands it does suggest the possibility that
more general neural networks may also show the same qualitative behaviour; i.e. the
required number of data points for good generalization grows only linearly with the input
dimension.

9. The probability of reaching a given weight vector starting from some initial weight
vector as a function of training time can be derived as a Fokker-Planck (diffusion)
equation. In addition, the probability of escaping from a local minimum as a function of

12 p_Baldi, Y. Chauvin, "Temporal Evolution of Generalization during Learning in Lincar Networks”,

Neyral Computation, v. 3, 1991, pgs. 589-603.

13 £ Baum, Y. Lyuu, "The Transition to Perfect Generalization in Perceptrons”, Neural Computation, v.
3, 1991, pgs. 386-401.

x,
»
v
LY,
»
&
»
»
»
» o
)
)
>
»

FINAL REPORT 12 Contract N0O0O14-89-C-0257

training time can be expressed as a Fokker-Planck equation. The results are verified with
experiments on the XOR problem.14

10. The error in a feedforward neural network with one hidden layer of sigmoidal nodes
can be shown to a have a bound which depends on the number of hidden nodes n: The
squared error is of the order of c/n when the network is approximating functions which
satisfy a particular smoothness condition. ¢ is a constant which depends on the function
to be fit and may depend on the input dimension d; but there are many functions for
which ¢ can be shown to have a less than exponential dependence on d. In contrast, if
such a function is fit to a series expansion with n fixed terms, the squared error can not be
made smaller than order (1/n)2/d . Thus, for series expansions, as the input dimension is
increased, the number of parameters must grow exponentially with d in order to maintain
a given error. The neural network, on the other hand, can potentially achieve the same
error without an exponentially increasing number of hidden nodes. The key difference is
that for a neural network, the basis functions are adaptable, whereas for series expansion
methods, the basis functions are fixed!5.

This key differenc~ between the ANN and a series expansion of fixed basis
functions can be explained a. -lows: For the ANN one can specify a given number of
hidden nodes, n. The neural network then provides an expansion with n sigmoidal
functions. But the functions themselves are not fixed from the start; they are varied
through training of the weights wi’ (shown below). On the other hand, with the series
expansion approach, one chooses n definite basis functions. The basis functions are not
free to change, therefore, in general, a greater number of them are needed to fit the same
function.

Series expansion: f(x) = Zj wi fix).

ANN: f(x) = Xj wj Gi(Wj’s X - vj).

The proof is detailed but the gist of it can be illustrated as follows. Suppose that the
function we wish to approximate can be represented by a one-hidden layer ANN with a

very large number of hidden nodes, let us say a million. Now the question is how well
can we approximate this with only n nodes, where n is less than a million:

fa(x) =1/n X5 gi, where gi=nwjoj .
Let the n functions gj be sampled randomly from the million g’s that make up the desired
function. Then if we take an ensemble average of such samplings we will reproduce the

function f(x): <fp(x)> = f(x). Furthermore the average value of the squared error can be
expressed as

<(fp(x) - f(x))2> = <(I/nZjgi)s - f(x)?

14 T K. Leen, G. B. Orr, "Weight-Space Probability Densities and Convergence Times for Stochastic
Learning”, JCNN 1992 IV, 1992, pgs. 158-164

15 A. Barron, "Universal Approximation Bounds for Superpositions of a Sigmoidal Function", 1o appear in
IEEE Transactions on Information Theory.

¥ @

{¢

FINAL REPORT 13 Contract N0O0014-89-C-0257

(<g1 82> +1m<gi? -gig2>]- [<g) g2> + 1/N<g? - g 182>

]

1/n<g? - g1g2>

I/n< (g - f(x)?>
< ¢/n.

The term <g; g7> is an ensemble average over components with differing indices and is
equal to f(x)2 in the limit of large N. The last line above assumes a constant ¢ which
bounds both g and f. Now, given that the ensemble average of the squared error is less
than or equal to ¢/n it must be true that there is at least one selection of g's which has an
error less than or equal to ¢/n.

The above proof shows that there is a selection of weights such that a neural
network with n hidden nodes will produce a squared error less than c/n. These weights
are typically found by gradient descent training which adjusts the weights to minimize the
squared error. On the other hand, if one attempts to fit the function with n terms of an
expansion with fixed basis functions, then one will in general not have the best n terms.
Unless the basis functions are allowed to vary during training, the limit of ¢/n on the error
is not guaranteed. Indeed for problems of higher input dimension d, the probability that
the first n terms in an expansion are the correct terms must be exponentially small
(something like ed) since the number of possible basis functions grows exponentially
with d. To be guaranteed a good error, the number of fixed basis functions must grow
exponentially with the dimensions of the problem. This is the curse of dimensionality
which is overcome by using variable basis functions.

11. Pineda's Argument on NN Computational Efficiency

The neural network structure (weighted sums of nonlinear functions of weighted
sums) provides a framework for mapping arbitrary nonlinear functions of a set of inputs
to a set of outputs. In addition, this structure allows calculation of the gradient of the
output error with respect to the free parameters in a form which reduces the
compu*~tional requirements by a factor of N, where N is the number of free parameters
(weighus plus thresholds) in the network. Because the most common optimization
techniques require the calculation of this gradient, neural networks provide a factor of N
reduction in the number of computations required to solve optimization problems. This
may be the most important reason that backpropagation (error minimization) algorithms
have made such an impact in neural computing.

The calculation of an arbitrary function of N parameters in general requires at
least on the order of N calculations (such as additions or multiplications). The gradient of
an error function formed from such a function in general then requires of the order of N2
calculations, since there are N components to the gradient and each component requires
on the order of N calculations. As an example, consider a polynomial of order N-1,
which has N free parameters wy .. wy_j:

Y(x) = wo+wix + wax? + .+ wy. V-1

x

[
FINAL REPORT ' 14 Contract N00014-89-C-0257 *
%
For problems in which y(x) is to be fit to some desired value y2 over a fixed training set ® i
of points x3, a conventional approach is to minimize the quadratic error over the training
set: &
1 a a\2
e=22 (yx)-y).
4 1 4
The gradient of the error is then
d£ a a a n-1
= x‘)— ,
”y ;(y()=y)nw,(x°)
[]
which requires of the order of N calculations (to evaluate y(x4)) for each training point.
On the other hand, a neural network with one hidden layer of nodes has an output
of the form ®
n2 nl \
y(x) = ZW'/‘{ZWH.-) :
j=1 i=1 » PY

The number of free parametérs isN=nln2+n2 = (nl+1)n2. We will consider the
typical situation in which the number of input nodes nl is much greater than one, then N
=nl n2. Because of the iterated structure of the network, the evaluation of the gradient

of the error simplifies to a product of two pieces for each data point: »
de de
-_—= 5"x'“' —_— 69 X?,
dw 2 ’ dw, Z P
where »
& =(y(x")-y) o 6 = 6° w0
The argument of ¢ is understood to be the weighted sum of inputs coming into the output »

node and the argument of oj is understood to be the weighted sum of inputs coming into
the hidden node labeled by j. Calculation of the gradient is basically reduced to
calculation of 82 which requires of the order of N computations. &;3 then requires
another N computations for a total of the order of 2N (which is still of the order of N).

-

(I

FINAL REPORT 15 Contract N00OO14-89-C-0257

Scaling of Back-Propagation Training
Time to Large Dimensions

(published in IJCNN'90 Proceedings)

Abstract

The training time for the back-propagation neural network algorithm is studied as a function of input
dimension for the problem of discriminating between two overlapping multidimensional Gaussian
distributions. This problem is simple enough (it is linearly separable for distributions of equal standard
deviation which are not centered at the same point) to allow an analytic determination of the expected
performance, and yet it is realistic in the sense that many real-world problems have distributions of
discriminants which are approximately Gaussian. The simulations are carried out for input dimensions
ranging from 1 to 1000 and show that, for large enough N, the training time scales linearly with input
dimension, N, when a constant error criterion is used to determine when to terminate training. The slope
of this linear dependence is a function of the error criterion and the ratio of the standard deviation to
separation of the two Gaussian distributions. The closer the separation, the longer is the required training
time. For each input dimension a full statistical treatment was implemented by training the network 4060
times with a different random initialization of weights and biases each time. These results provide insight
into the ultimate limitations of a straighifoward implementation of back-propagation.

1. Introduction

The popularity of the back-propagation (BP) neural network training algorithm
can be traced in part to the simplicity and ease of implementation of this paradigm which
is capable of forming nonlinear and non-overlapping classification regions (Cybenko,
1988, Lippmann, 1987). Its utility lies in its practical application to large classification
and optimization problems where the reduced calculational complexity of BP over non-
neural methods can make a difficult problem tractable (Pineda, 1989). While several
empirical studies have been carried out to investigate the scaling of problems which are
relatively difficult to learn with BP, such as the parity function (Fogaca, Kramer, 1988) or
the simpler linearly separable majority function (Ahmad, Tesauro, 1988), the former has
limited applicability to realistic problems and the latter has been restricted to problems of
relatively small dimension. The present study is intended to extend this work to explore a
slightly more realistic problem in the realm of input dimensions ranging from 1 to 1000
dimensions.

2. The Input: Multi-Dimensional Gaussians

The problem considered is that of two overlapping Gaussian distributions in an
input space of dimension N. For simplicity, only spherically symmetric distributions are
considered in this report. Two such distributions are linearly separable. That is, one can
draw a hyperplane (a line in two dimensions, a plane in three, etc.) in the input space
such that al! points on one side of the hyperplane are to be classified as class 1 and all
points on the other side are to be classified as class 2. Because thc iwo disiribuilons

FINAL REPORT 29 Contract N00014-89-C-0257

FINAL REPORT 16 Contract N00014-89-C-0257

overlap, there will be missclassifications. But this partition of the input space (Bayes'
criterion) minimizes the errors. The fraction of missclassified points can be calculated as
follows: The two distributions are described by Gaussians of the form:

P10 = 1/(NVQ2ro 2N expl - (r - r1)2/(2612)], (1)
pa(r) = 1/N@2roa2)N expl - (r - r2)2/(2022) |,)

where p1(r) (p2(r)) gives the probtability of finding a point, known to be of class 1 (2),
at position r in the N dimensional space. r{ and r) are the centers of the two
distributions, and 61 and G are the respective standard deviations. The probability of

interest is the probability, p(1 1 r), that a given point r should be classified as class 1. By
Bayes' relationship, this can be expressed in terms of the probabilities given in equations
1 and 2. For example,

p(lir) = py@) p1 /[p1(r) py + p2(r) p21, 3

where p} and p) are the ‘a priori' probabilities of finding class 1 or 2 irrespective of

position and are therefore proportional to the number of points of each class. Each point
is assumed to be either of class 1 or of class 2; the 'a priori’ probabilities add up to unity.

The probability that a point at r should be classified as type 1 can be expressed as

p(1Ir) = 1/[1 +p2/p1 p2(r)/p1(D)]. 4)

According to Bayes' rule (Duda, Hart, 1973), for the situation in which there is an equal
penalty for missclassifying classes 1 and 2, the point at r should be classified as class 1
whenever p(1 I'r) > p(2 I r). This is seen to be equivalent to the statement

P1(r) p1>p2(r) p2, &)
For simplicity we will consider the situation in which there are equal numbers of points in

each distribution. Furthermore, the standard deviations of the two distributions will be
assumed equal:

P1=P2,
6] =03 =0. (6)

Then the classification boundary is, according to equations 1, 2 and 5, described by an
equation linear in r:

r(rp-rp) =12 +rp) - (ry-rp), 7

which describes a hyperplane in N dimensions midway between the centers of the two
distributions and normal to the vector that joins the two centers. In the more general case

1L~

for which the standard deviations of the two distributions are different, the classification

B

FINAL REPORT 17 Contract N0OO014-89-C-0257

boundary would be a quadratic surface. For the current situation the fraction of points
missclassified, can be expressed as an integral of pyp1(r) over all points to the right of
the hyperplane (assuming class 1 is on the left and class 2 is on the right) added to the
corresponding integral of ppp(r) over all points to the left of the hyperplane. The result
for f, the fraction of points correctly classified, is given in terms of the complementary
error function:

= 1-1/2 erfc(r/(cV8)), (8)

where &r is the distance between the two centers.

3. Implementation

Because the problem considered is linearly separable, it can in principle be solved
by a two-layer neural network (no hidden layer) (Lippmann, 1987). Indeed, it is easy to
see, from equations 1, 2 and 4 just how to choose the weights so that the network 's
output value is equal to the desired classification probability, p(1 | r). However, for the
present study, a network with one hidden layer has been used so that comparisons may be
made among networks having different numbers of neurons in order to undesstand the
scaling of training time with both problem size, N, and with the size of the network.

Accordingly, the network consists of an input layer having N nodes, a middle
layer having N' nodes (which is varied from 1 to 20), and a single output node which
represents the probability that the input point should be classified as class 1. The value
of the ith input node represents the ith coordinate value of the input point which was
restricted to lie in the range from -1 to +1. The output value was trained to be 1 or 0
according to whether the input point belonged to class 1 or 2. A training set of unlimited
size was used. That is, each point in the distribution was randomly selected from the
entire space for each trial. The network was tested on a different set of 500 randomly
selected points.

A standard backpropagation algorithm adopted from Rumelhart and McClelland
(1986) was used to train the net. A learning rate of 0.3, a bias learning rate of 0.3 and a
momentum coefficient of 0.7 were used. For each experiment, the network was trained
400 times, with a different selection of randomly chosen initial weights (between -1 and
+1). This allows us to describe the statistical distribution of training times.

4. Results

The distributions of number of trials to learn is shown in Figure 1 for the case in
which 8r/c = 4 (Or = 0.4, ¢ = 0.1). This is for a network with one node in the middle
layer which is trained until 90% of the points in the test set are correctly classified (longer
training could produce a fraction f = 98% according to equation 8). Several points can
be observed from this. As the input dimension, N, is increased the distributions shift to
longer training times, as expected. The shift is apparently linear with N. Moreover, the

FINAL REPORT 18 Contract N00014-89-C-0257

spread of the distribution increases (and the peak correspondingly decreases) as N
increases. This is shown more clearly in Figure 2, where the mode, mean and standard
deviations of the distributions are shown. As can be seen, for input dimensions ranging
from 100 to 1000, the required number of trials is approximately linear in N. The
distributions are slightly skewed as reflected in the fact that the mean is larger than the
mode. Also shown in Figure 2 is the increase in slope when the network is trained to
yield fewer missclassif~ations.

0.003 v Y v T v T v T v
I N = 100
0.002 |- 1
>
3
z
8)
2
[0.001 | 1
—— |
0.000 A A . 2
0 1000 2000 3000 4000 5000

Number of Trials to reach f = 0.90

Figure 1. Distribution of number of training iterations for various input dimensions. dr/c = 0.4/0.1,)

=90%.
5000 r T T T 4 T \3 T M
4000
c)
5 3000
e
w
K]
‘=
’% 2000 f=90%
N e mode
3 Ey—— mean ’
1000 ~~=~— stddev
t=97%
o wossiene mean
(o] 200 400 600 800 1000
input Dimension
Figure 2. Scaling of number of trials to learn to a level of 90% and 97% correct for two overlapping ’

Gaussian distributions. Each point represents a statistical sampling of 400 training
sessions. &r =0.4,0=0.1.

FINAL REPORT 19 Contract NOO014-89-C-0257

The slope of the line which approximates the large dimension behavior is dependent upon
the ratio of the spacing to standard deviation of the Gaussians, as is shown in Figure 3.
The smaller is the ratio, the more closely spaced are the distributions, for fixed o, and the
scaling with input dimension is more steep. The more the overlap of the two
distributions, the more difficult is the problem for the back-propagation algorithm. Note
that the slope is obtained from the distributions of training times for N=100 and N=200
only. The linear dependence at large N has been checked for 8r/c =4 and 2 only. For
the experiments which generated the data in this figure the criterion for ending the
training session was that the network classify correctly the test data set as best as is
possible (the Bayes' limit of equation 8) to within 1%. This is a more stringent
requirement which results in longer training times and steeper slopes for the curve of
training iterations vs N. The behavior depicted in the figure is roughly an inverse
dependence of the slope on &/0, i. e. slope o« o/8r. For the example of N = 10, shown
in Figure 4, the training time was also shown to scale as o©/dr.

100
i i d i 4 Ratio %6Correct
0.5
1.0 69
1.5 77
80 | B 20 84
2.5 89
3.0 93
3.5 95
- o
60 4.0 97
5 ' 4.5 Qe
=2 5.0 99
40 = -
20 = P
L ------- Mode
A MQan
(o]
0.0 1.0 2.0 3.0 4.0 5.0

Separation/Standard Deviation

Figure 3. Dependence of the siope of the curve for training iteration vs N on the ratio dric. The
networks are trained to within 1% of the fraction correct given by Equation 8. The
table in the upper right corner indicates the values of f (chosen to be within 1% of
Bayes' limit) for each value of dr/c used.

]

»
FINAL REPORT 20 Contract N0O0O014-89-C-0257 *
100000 . i
L%
]
i 10000 &
s
i
%
g 1000 »
100
Separation/ Standard Devistion .
Figure 4. Dependence of number of training iterations on separation of Gaussians for 10 input
dimensions. The networks are trained to within 1% of the fraction correct given by
Equation 8.
The dependence on the number of nodes in the middle layer of the network is shown in »
Figure 5. There is an initial decrease in number of trials required followed by a gradual
increase. Presumably, even though one node is sufficient, the number of ways of
obtaining a solution is greater as one increase the number of nodes. This is countered by
the larger weight space which must be searched. Presumably the curve reflects the
competition between these two effects. » ®
1400 Y - r —
d <
. 1300} 4
g
2 [] »
o
§ 1200 s
3
e
4 i 1
2
S 1100 = -
£ | . ’
z
1000 wle > k v
o] S 10 15 20
Number of Nodes in Hidden Layer
Figure 5. Dependence of mean number of trials to reach a sumn squared output error of 0.1 on the »
number of nodes in the hidden layer. N = 10, 6r/c = 0.4/0.1 = 4.
»

»,

8]

FINAL REPORT 21 Contract NOOO14-89-C-0257

5. Conclusions

Calculation of the times to train a feedforward network using the back-
propagation algorithm have been performed for the simple problem of two overlapping
Gaussian distributions. Results have shown a linear scaling with input dimension. The
slope of the line is roughly proportional to the ratio of the standard deviation to the
separation of the two distributions. As the ratio increases, the overlap between the
distributions grows, and more iterations are required to train the network. The fact that
the slope increases as the separation decreases or the error criterion becomes more
stringent (rather than simply giving a translation of the curve to larger numbers of trials)
is not understood, but it indicates that the relative difficulty of solving problems of
different dimensions is dependent upon the error criterion and the characteristics of the
problem (parametrized in this example by 8r/c).

Furthermere, as the input dimension increases, the training time distribution
function changes. This function gives the probability per unit range of the number of
training trials that a given set of initial weights, chosen at random, will lead to a network
that trains to a fixed error level. This distribution becomes more spread out as N
increases; the standard deviation increases. In particular, the tail of the distribution grows
larger, making it more likcly to require a larger number of trials to learn. Any empirical
studies of the training time must train the network a correspondingly larger number of
times (with different initial weights) for large dimensional problems in order to make any
statistically meaningful statements.

While these empirical conclusions are useful for understanding the training time
required for a simple class of problems, the theoretical chalienge remains to explain the
results analytically. Does the behavior continue for larger input dimensions? How is the
scaling modified for problems that are not linearly separable or that have multiply
disconnected regions in the input space? Can one derive the scaling behavior as a
function of a more general measure of problem complexity? These questions remain to
be anwered.

6. References

Ahmad, S., G. Tesauro, "Scaling and Generalization in Neural Networks: A Case Study”,

Proceedings of the 1988 Connectionist Models Summer School, 1988, Touretzky,

Hinton, Sejnowski, Morgan Kaufmann Publishers, San Mateo, California.

Cybenko, G., Continuous Valued Neural Networks with Two Hidden l.aycrs are
Sufficient, 1988, Tufts U. preprint.

Duda, R. O., P. E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons,
1973, New York.

Fogaca, M., A. Kramer, B. Moore, "Scalability Issues in Neural Networks", Neuraj
Networks, 1988, pg.1, Suppl 1.

FINAL REPORT 22 Contract N0OOO14-89-C-0257

Lippmann, R., 1987, "An Introduction to Computing with Neural Nets”, /EEE ASSP
Magazine, 1987, v.4(2), pgs. 4-22.

Pineda, F. J., "Recurrent Backpropagation and the Dynamical Approach to Adaptive
Neural Computation”, Neural Computation, 1989, v. 1, pgs. 161-172.

Rumelhart, D. E., J. L. McClelland and the PDP Research Group, Parallel Disiributed
Processing, MIT Press, 1986, Cambridge, Massachussetts.

7. Acknowledgements

This research was sponsored by Geo-Centers, ONR and DARPA under contracts
GC-1710-89-R-001 and N0O014-89C-0257.

»;

FINAL REPORT 23 Contract N0O0O014-89-C-0257

Classification and Function Fitting as a
Function of Scale and Complexity

1. Introduction

Understanding neural network performance as a function of the scale and
complexity of the problem it is trained to solve is important in extrapolating the
capability of neural networks in solving complex large scale problems from a knowledge
of their performance on simpler, smaller scale problems. To measure this performance,
we refer to two general applications of neural networks, namely classification and fitting:
Classification involves the division of a set of vectors into two or more sets or "classes”,
and fitting is the approximation of a vector function of a vector argument.

The performance of the neural network on these two problems is measured by its
ability to generalize: If the neural network is trzined on a set of inputs (the training set),
how well does it perform on another set of inputs (the test set)? This performance
measure is a function of the number of training inputs and the number of intermediate
layer neurons in the network. As the number of points in the training set is increased, the
classifier becomes more accurate in its predictions on the testing set. Similarly, a larger
classifier (more nodes in a neural network, higher order polynomial, etc.), is able to
discern greater detail or successfully classify a more complicated problem. The claim
that too many nodes in the intermediate layer of a neural network can result in
overlearning is also investigated. By varying the number of training points and the
classifier size, we can study their effects on generalization. Finally, the network
performance on the fitting problem is compared to the performance of a polynomial least
squares fitting algorithm with a similar learning scheme.

The neural network used for both the classification and the fitting problem is a
standard, three layer back-propagation feedforward network with one input node, a
variable number of intermediate level nodes, and one output node.

2. Classification of 2 Regions in 1-D

2.1 Approach

Perhaps the simplest example of a classification problem is the division of a 1-D
(scalar) input into two classes. Let the single input x vary from 0 to 1 and let the output
class yq ,the desired output, be

FINAL REPORT 24 Contract N0O0O014-89-C-0257

yd =0 if x<05 and
yd =1 if x>05.

Learning the appropriate class for each x is done by example: The training set is
composed of n pairs (x,y) chosen at random, where the input x ranges from O to 1, and yd
is the correct class of the input x and is set to 0 or 1. The neural network has a single
output y designed to reproduce the correct output yq . Its error is defined as

E=(y-yd)?2/2.

The network randomly chooses a pair (x,y) from the n pairs, and then learns by changing
its weigths and thresholds through the gradient descent method, which is designed to
minimize the error by moving opposite the direction of the gradient of the error. The
performance, defined as the generalization capability, is measured by the fraction of test
points misclassified. Iterating throngh the entire test set of 1000 points, also chosen
randomly, for each point,

if y - yd < 0.5, then the test point is considered correctly classified, and
if y - yd > 0.5, then the test point is considered misclassified.

The fraction misclassified is the total number of misclassified icst points in both classes
divided by the total number of test points.

Since both the training set and the initial neural network weights are chosen
randomly, a single training session on one training set will not provide a statistically
significant measure of performance. It is necessary to choose a number of different
training sets and initial random weights for each n, and to average the fraction of points
misclassified over these different sets of training points and weights.

2.2 Results

The performance of the neural network is shown in Figure 1 where the fraction of
test points misclassified by the network is plotted against the number of input points used
to train the network. As discussed above, each point in Figure 1 represents an average
over 20 different sets of weights for each of 20 different sets of n training points. With
only one training point (n=1), the network fails to generalize. Since it only sees a point
from one class, it missclassifies all the points from the other class, a 50%
misclassification. With two points, there is still a large probability (0.5) that both points
will be from the same class, hence the error is still large. As n increases, the probability
that all points will be from the same class becomes small and the points will tend to span
the entire range of inputs values, thus reducing the fractior misclassified.

-

fa

FINAL REPORT 25 Contract N00014-89-C-0257

06 ——————v—rrr ——r—rrrrr

Neural Network Results:

number of intermediate
level nodes

fraction misclassified

Theoretical results:

o me > the two class averages

the two closest points

number of training points

Fig. 1: Classification of Two Regions by a Neural Network-Performance as a function of the number
of training points

The dashed line in Figure 1 is an exact theoretical value of the minimum possible
fraction of test points misclassified when a classifier is trained on n points, and averaged
over all possible choices of n training points. This is calculated by finding the average
position of the training points in each class and drawing the boundary between the two
classes halfway between the two average positions. The fraction misclassified
corresponds to the distance from this halfway mark to the correct boundary between the
two classes (0.5). This result is derived in the appendix and is obtained by averaging the
fraction misclassified over all the possible choices of input points. The solid line is
another theoretical calculation of the minimum possible fraction misclassified, also
averaged over all possible choices of training points. In this calculation, first, the two
closest points of opposite classes are found, and then the boundary between the two
classes is drawn halfway between these two points. This result is also derived in the
appendix and is nearly equal to the other result (see Figure 1). For large n, the second
theoretical calculation of the least possible classification error is inversely proportional to
the number of training points n, i.e.,

fn~ 1/2n,

for large n. In other words, for this simple classification problem, in order to reduce the
fractionmisclassified by a factor of two, one needs to use twice as many training points.
We do not claim that this result is general; its utility and applicability to other
classification problems needs to be investigated. However, the results from this particular

]

«d,

&

FINAL REPORT 26 Contract N0OOO14-89-C-0257

problem suggests that probably, for some classes of problems, the fraction of points
misciassified will be inversely proportional to the number of training points.

The neural network performance is consistent with this result; its error is generally
slightly above this theoretical limit. Since we ceased training after reaching an error of
0.01, we did not gauge the best possible performance of the neural network. After a
longer training session, the network error should move even closer to the theoretical limit.

Increasing the number of intermediate layer nodes m and therefore also the
number of weights and thresholds has little effect on the performance. Since only one
intermediate layer node is required to separate two regions, increasing m has little effect
on performance. This can be seen in Figure 1 but also more clearly in Figure 2 where the
fraction misclassified is plotted against the number of intermediate layer nodes. For any
n, the fraction of points misclassified is essentially constant for all m.

06 P P S N
|
1 —a- number of training points
05 —ar L
] ! ——
——
04 r—
‘//\, eelierens
4
1 5
-

e
e,

LAV
S

fraction misclassified

§3550m\10\mbur\)-—

number of intermediate level nodes

Fig. 2: Classification of Two Regions by a Neural Network-Performance as a function of the number
of intermediate level nodes in the network.

"Overleaming” is not observed even for very large m, (m = 100). Note that this
result holds for any number of training points (n = 1, 2, 3, 4, ..., 10, 30, 50, 100). Qur
explanation is that in learning to classify, a neural network translates and orients
"hyperplanes” until they coincide with the boundaries which divide spatial regions
corresponding to different classes. Since we start from randomly selected weights and
thresholds, i.e., random positions and orientation of hyperplanes, it is unlikely that many
hyperplanes will appear in the vicinity of the boundary. Instead, usually a single
hyperplane will be brought to the boundary during the learning process, and once it is
properly located and oriented, other hyperplanes will be subdued, i.e. the weights and
thresholds to other intermediate level nodes will be decreased. Hence, overlearning does

FINALI.RFPORT 41 Contract NOXY1A_RO.C.(DK87

FINAL REPORT 27 Contract N0O0O14-89-C-0257

not occur in this problem, since it would require the presence of more than one
hyperplane near the boundary between the two regions.

3. Fitting: Estimating a Function

3.1 Approach

The simplest example of a fitting problem is the fitting of a scalar function f of a
scalar input x. f can be any simple smooth, bounded function, bu* our choice of a
sinusoid will allow us to vary the complexity of f(x) in future studies by varying the
wavelength of the sinusoid. Let

f(x) = A + Bsin(ppx), p=0,1,2...

Our objective is to study the generalization performance of the neural network and
compare it to a polynomial least squares fitting algorithm,

The neural network and the polynomial least squares fit are trained on a set of n
training points with the gradient descent method. Each training point x is chosen
randomly in the interval from 0 to 1, and its desired output is the value of the function at
x, f(x). The gradient descentmethod applied to the polynomial fitting scheme is the same
as that applied to the neural network.

The error made by the neural network for each training or test point is:

E=[y)-fx)]2 /2,

where y(x) is the output of the neural network for the input point x.

For a polynomial of order m, and for each point, the error made by the polynomial
in estimating the f(x) is analogous:

E=[pmx)-f(x)12 /2,
where pm(x) is the polynom.ai ayproximation (fit) of f(x) for the input point x:
Pm(x)=ap +ayx+axx3 +..+amXm .
In learning, the coefficients in the polynomial are treated in the same way as the weights
in the neural network. At each iteration of the learning process, the coefficients are
changed in a direction opposite to that of the gradient, i.e.,
Daj =-ng/daj ,

where g is a gain parameter. By iterating through the training set, we minimize the error.

FINAL REPORT 28 Contract NO0014-89-C-0257

For this study, we consider the simplest case, i.e. p = 0 and A = 0.5, where f(x)
becomes a constant and the fitting problem reduces to the problem of approximating a
constant function.

The performance for the fitting problem is measured through the error (rather than
the fraction of misclassified points) for both the polynomial fitting algorithm and the
neural network, by averaging over the error of the entire test set of 1000 points.

As in the case of the classification problem, a single random selection of training
points and weights will not provide a statistically accurate measurement of performance.
Thereforc, we will average the performance over 20 different selections of weights for
each of 20 different selections of n training points.

3.2 Results

In Figure 3, the generalization error of the network is plotted against the number
of training input points. Since two points are necessary to determine a line, one training
point is insufficient for training either a network or a polynomial to approximate a line.
Two training points are the minimum number needed, but since the points are chosen
randomly, they may be near each other or span a limited range of values. Thcrefore the
addition of more training points results in some enhancement of the performance, but the
enhancement saturates as n is increased especially when n becomes large enough so that
the input set spans the range of x values.

“==8— polynomal fit

==& neural net fit

generalization error

Both classifiers are trained
to an error of 0.01

number of training points

Fig. 3: Function fitting- Comparison of the neural network fit to the polynomial fit with gradient
descent learning.

FINAL REPORT 29 Contract N0O0O14-89-C-0257

The performance of the neural network is compared to that of the polynomial least
squares fit in Figure 3. The error made by the polynomial is always greater than the error
made by theneural network especially when few input points are used in training. With
fewer than 10 input training points, the polynomial error is an order of magnitude greater
than the neural network error. Actually, this result may also be true for larger numbers of
training points, but since we had to stop training after the error reached or went below a
value of 0.01, the limits of the capability of the neural network were not tested. In fact,
after n = 10, the neural network error is already below 0.01.

Again, the addition of intermediate layer nodes has little effect and overlearning is
absent even with as many as 100 intermediate nodes. Our explanation for this is the same
as the one we gave for the absence of overlearning in the classification problem. As can
be seen in Figure 4, the generalization error is insensitive to changes in m form 2 4. For
m < 4, the number of training points is insufficient for generalization even though the
network may learn the training set perfectly.

0.014 A A At a2) i A PY S S U

b Number of Training Points:

generalization error
- oW N

—0— 10

0.000 4 T T Ty —r —rr T
1 10 100

number of intermediate layer nodes

Fig. 4: Function (line) fitting with a neural network - Generalization error vs. number of hidden layer
weights.

In Figure 5, the number of trials to learn the training set to an error of 0.01 or less
is plotted against the number of training points for the neural network and the polynomial
fitting algorithm. Note that when training on very few training points (one or two), the
performance on the test set may be poor even though the time to learn the training set is
short, i.e. generalization is difficult. The time it takes the neural network to learn to the
0.01 error level is an order of magnitude below that of the polynomial fitting algorithm
for most n and particularly for large n. Also, for n larger than 10, increasing n does not

FINAL REPORT 30 Contract N0O0O14-89-C-0257

effect the leamming time of the neural network, but it does increase the learning time of the
polynomial fitting algorithm at least up to n=90.

=@ polynomial fit

¥ newal network

W U B W U Sy R S

J 1 .{ Both classifiers are trained
- 1o an error of 0.01
: 1

number of trials to learn

1 T.I 1 1.1 .1 1
Y 117 1 I
40 60 80 100

number of training pts

Fig. 5: Function fitting: Comparison of training times of a neural network with a polynomial fit using
gradient descent learning.

This shows the strength of the neural network in fitting a function with relatively
few training points and with an error well below the error made by the polynomial least
squares algorithm.

4. Conclusions

We have demonstrated the strength of the neural network in the classification and
fitting problems. With relatively few training points, the neural network finds a
classification which generalizes successfully. In addition, for the simple problems in this
study, we have shown that the neural network generalization capability is insensitive to
the number of intermediate layer nodes in the network, as long as the minimum number
of required nodes is exceeded. Overlearning is absent and does not present a danger
when training for long times or with many intermediate layer nodes. Much of this may
be problem dependent, but it suggests that for certain classes of problems, the neural
network can exhibit this strong generalization capability with very few inputs, along with
the absence of danger of overlearning. We have also shown the superiority of the
network's performance over a conventional polynomial least squares algorithm for the
fitting problem.

~

g

FINAL REPORT 31 Contract NOOO14-89-C-0257

S. Appendix

Analytic calculation of the boundary between two classes in one
dimension

The boundary between two classes of points in a one dimensional problem can be
calculated analytically in a number of ways. In this appendix, two different solutions are
shown.

The first approach draws the boundary halfway between the two closest points of
opposite class. For convenience, let the points from class 1 and class 2 be denoted by x
and x' respectively, and chosen randomly in the ranges

0<x<1, and 0<x'<1.

Then, the boundary is drawn halfway between the smallest x and x":

Xp= (x-x)/2.

Since the actual boundary is at zero, the fraction of points misclassified will be the ratio
of the distance between zero and x}, and the total range of x and x' which is equal to 2:

E(x,x')=%|xb|= 41(x-x'|

The probability that g-1 points will be chosen between x and 1 and that one point
will be between x and x+dx is:

px)dx =q (1 -x)q'1 dx .

dx is the probability that a point will be chosen between x and x+dx, and q (1 - x)4-1 is
the probability that the other -1 points out of q points will fall between x and 1.
Similarly,

p&x)dx =r(l-x)"dx' .

is the probability that r-1 points will be chosen between x' and 1 and that one point will
be between x' and x'+dx’. Note that

fo lpq(x) dx = L &) dx =1

The average error made in choosing q points in class 1 and r points in class 2 is
found by integrating over all possible choices of x and x':

Y
[
®,

®
&

®

®

»

® o

»

»

»

»

FINAL REPORT 32 Contract NOOU14-89-C-0257

1 1 , .
e(q.r) = J‘ dx fo dX')P (X E(x,x')
_qrp! ’,_q-_,r«_,
—4fodxfodx(l 0V et
We can exchange x and x' with 1-x and 1-x'
=9£ ! v ql ,r1l .
e(q,r) 5), dxfo dx' x7 x' Ix-x'l
and eliminate the absolute value sign:
e(g,r) = ﬂ[f ldx’f “dx x Yy r'l(x-x') +f ldx' xFy r'1(x‘-x)\
i 4 [} l (V] x /

After integration, we get

q r

QN = ggren|rl T e

To find the average error for n points chosen from either class, we must consider
all possible choices of q and r which add to n. Since

q+r=n,let
r=n-q.

The number of ways in which q points will be chosen in one class and n-q points will be
chosen from the other class is

n!
q! (n-q)!

each of which has a 1/2™ probability of occurance. The error made for each choice of n
and q is e(q,n-q) for O< g< n. If q =0 or q = n, then all the points chosen fall into one of
the two classes. This will occur with a probability of 21-D . In these cases, all the points
belonging to the other class will be misclassified, so that the error will be 1/2 . Therefore,
the contribution to the total error from the q = 0 and q= n cases will be 2-1. The total
error or the fraction of n points misclassified is

1 n!

1
= e o —— — ,N-
T 2“«%‘1’ CRUARE

] FINAL REPORT 33 Contract NOOO14-89-C-0257
” 1 1 n-1 ot a n-q]
e,.=—+ .
n 2" 4(n+1)2“ g q' (n-q)! {n-q+1 = g+l

which is the sum of the errors made when q=0, q=n, and O<q<n. The two sums can be
rearranged to give:

n-2 n

1 n! . Z n!
q! (n-q)!

+ — —_
4n+1)2" a0 d (! o3

1
Cn——z'-;"

which can be readily summed:

+ 1 [2n+1

-2n-2
4(n+1)2"]

Cn=

1
211
Therefore, the fraction of points misclassified out of n randomly chosen points is:

1 1
€n= 2(n+1) M 2n+l

For large n, the fraction misclassified falls off as 1/2n .

The second approach draws the boundary halfway between the average positions
of the two classes of input points. Consider input points x from class 1 and x’ from class
2 in the ranges:

-in<0, and 0<x's-1—.
2 2

Let p points be chosen randomly from class 1 and q points from class 2, and let
the average positions of the two classes of points be

_ 1 n _ 1 L)
x=—2xi and x'=-—,2x’j .
ni:[n J=1

The boundary between the classes is drawn at

»

X, =§|}'+x‘|

and the fraction of points misclassified for a particular choice of xp is the fraction of
points which fall between xp, and the true boundary at 0:

FINAL REPORT 34 Contract NOOO14-89-C-0257

ftx)=l|= 3+ 7.

This error occurs for all values of x; and x; for which the boundary ends up at xp. The
average fraction missed is found by integrating over all possible values of x; and Xj and

Xph:

+
|

)

o

F=2mm jdx jdx jdx jdx jdx jdx _[dx, £(x, 8(x, -

-2 -t 2 !

where 28+M js the normalization constant. The integral over xp eliminates the delta
function and we gei

f:<—;-l:t-+?l>

where < > is a shorthand for 20*M times the n+m integrals over all xj and xj. The
integrand can be expressed in terms of the step function ©

e+x]|=(x+X)O(x+X) - (x+X)O(-x - X').
The step function, in turn, can be expressed as

e’ - dk e
or _
2m k—ig ~=2mi —k—ic

O(y)= j

in the limit that € approaches zero. Therefore, the fraction misclassified can be expressed
as

F ”i 1 I = = aceoin

= ~<{x+x')e
4 —=2mi k—ig 2 ()

—ik(x+x)/2

—(x+x)e > .

Integrating by parts and combining, we get:

7:_,_2 = ik_ 1 < kT2

> .
- 2r (k-ig)?

The integral represented by the braces is over all xj and xj' and is a product of n+m
integrals of the form

2 }dxeh/Zn or le.’dx' eikz'/2n' .
0

-1r2

Therefore, the resulting integral is the product:

~,

FINAL REPORT 35 Contract N0O0O014-89-C-0257

et 5 [sin(k /8,,)]" [sin(k / 8n’)]-'
k/8n k/8n’

and the fraction misclassified is

f=-2lim

- dk 1 [sin(k/Sn)}" [sin(k/c?n')]"‘
e=0d-= 21 (k—ie) '

k/8n k/8n’

Now, if we perform a binomial expansion of the products

[sin(k/&t)]' [Sin(k /8'1')].(- (ﬁ)n(ifl’_)l (eugm.._ l)“ (l_e—;uu')"'

k/8n k/8n’ ik ik
NEAVEA S N R (=
_(k)(k)l ;(mj(m)(b e ’

we can integrate term by term and get

_ nnn.n' (__l)n n n' _ e Z_ﬂ' LEX
T 2n+n+1) z(m)(m’)(g (n n') '

m,m

i

where the sum is restricted to m/n > m'/n’ . Since n+n' = N,

_— nu(N_n)N-n n N_n ynemen ﬂ“ ' N+l
f= 2(N +1) E(mJ(m')(2 (n N—n) ’

m.m

where the sum is again restricted to m/n > m'/(N-n).

~ 1

FINAL REPORT 37 Contract NOOO14-89-C-0257

A Comparison of Classifiers:
The Neural Network, Bayes-Gaussian,
and k-Nearest Neighbor Classifiers

1. Introduction

The utility and performance of various classification schemes, both classical and
neural network, are strongly dependent on the type of problem to which they are applied.
Comparisons of the application of these classifiers to a particular problem yield results
which are specific to that problem and are often inapplicable to other problems.
Therefore, it is useful to investigate the broad classes or types of problems which are
particularly easy or difficult to solve with each classifer.

We confine this work to three classifiers, namely the Bayes-Gaussian, the k-
nearest neighbor and the neural network applied to the general static categorization (or
classification) problem, namely the categorization of many objects into a few classes.

For the purpose of this comparison, we find it useful to represent the problem of
the categorization of objects into classes geometrically: Given n properties of each object
to be used for classification, each object can be considered as an n-dimensional input
vector x plotted in an n-dimensional "discriminant” space where each dimension
corresponds to a property of the object. If the vectors belonging to each class fall into the
same regions of space, then the properties (discriminants) can be successful in
distinguishing between the various classes. These regions can be of arbitrary shape and
geometrical complexity, including multiply-connected or stringy regions. The problem
of discrimination is equivalent to the problem of separating this space into regions
corresponding to a single class, i.e., drawing boundaries which separate the vectors
belonging to one class from vectors of all other classes. The performance of any
classification scheme in a particular problem depends on how the classifier draws
boundaries in this space and whether or not its scheme is suited to the geometry of the
regions formed by each class of input vectors.

In practical applications, performance may not be the only criterion in choosing
the appropriate classifier. Two other important considerations are time and storage, the
time it takes to implement the classifier (training plus testing) and the amount of storage
required by the classification algorithm after learning. For some problems, the time or
storage may not be a factor, but in general such criteria must also be considered in
weighing the merits of a classifier in solving a particular problem.

»
FINAL REPORT 38 Contract N0O0O14-89-C-0257
L
2. Description of the Bayes-Gaussian and k-Nearest
Al L3 .
Neighbor Classifiers
2.1. Bayes and Bayes-Gaussian Classifier
The Bayes classification method is based on a simple relationship from probability d
theory. In order to describe this relationship, we begin witk some simple definitions: Let
p(A) be defined as the probability of occurrence of event A, and p(AIB) be defined as the
conditional probability of occurrence of A given that B has occurred. Let p(A,B) be
defined as the probability of occurrence of both A and B.
®
To derive this relationship, we note that p(A,B), the probability of occurrence of
both A and B is the probability of occurrence of B times the probability of occurrence of
A given that B has occurred and vice versa, i.e.
p(A,B) = p(AIB) p(B), and also .
P(A,B) = p(BIA) p(A).
By equating the two equations above, we get the simple relationship between the
conditional probabilities p(BIA) and p(AIB) which is the basis of Bayes classification
scheme: »
p(AIB) = p(BIA) p(A) / p(B) .
Therefore, the probability that a given point x belongs to class 1 can be expressed in
terms of the probability that a class 1 point will be found at the position x:
»
p(1lx) = p(xI1) p(1) / p(x) ,
where p(1) is the fraction of total points which belong to class 1, and p(x) is the
probability of picking the point x from the distribution.
For convenience, we choose 2 classes; the following expressions can be easily ’
extended to more than 2 classes if needed. Then, the normalization condition that every
point x must belong to some class, i.e. class 1 or class 2
p(1lx) + p(2Ix) = 1
]
leads to the expression
p(1ix) = p(xi1) p(1) / [p(1) p(xI1) + p(2) p(xI2)]
and a similar equation for p(2!x). Therefore, given any known distribution of each class »

of inputs, p(xl1) and p(xI2), and the relative probabilities of occurrance of class 1 and
class 2 points, p(1) and p(2), we can calculate the probability that any given point x
belongs to class 1 (or class 2).

_7

-~

FINAL REPORT 39 Contract N0O0014-89-C-0257

The Bayes-Gaussian classification scheme is based on the assumption that the
distribution of each class of inputs, p(xI1) and p(x(2), can be approximated by a Gaussian
distribution. In an n-dimensional space, where each dimension corresponds to a
discriminant input, an n-dimensional Gaussian must be fit to the distribution of each
class. The mean of the Gaussian distribution corresponding to each class is the average
value of the inputs which belong to that class. Forexample, the mean position of the class
1 distribution is

<xi> = (1/N) §; xj(a), or
<x> = (1/N) S3 x(a)

where x(a) is the ath class 1 input point in the training distribution and <x> is the average
class 1 input point. Then, to determine the width of the Gaussian along each dimension,
we must calculate the covariance matrix C of the class 1 inputs, which consists of all
possible correlations of inputs summed over the class 1 distribution:

Cij = (1/N) Sa (xi(a) - <xi>) (xj(a) - <xj >) , or
C=(1/N) Sz (x(a) - <x>) (x(a) - <x>) .

where C is expressed as a dyadic. The Gaussian distribution can be written in terms of the
inverse of C, C-1, the determinant of C, IC!, and the average class 1 input vector <x>

p(x!1) =exp [-(xk - <x>)TC-13(xk - <x>) /2 }/[2p)V2 IC11/12)

where C-1 is the inverse matrix in dyadic form. The distribution is expressed as a
conditional probability; p(x!1) is the probability that a class 1 point will be found at the
position x. This procedure is repeated for each class to find p(xI2), p(xI3), etc.. Then, by
using the normalized Bayes relationship discussed above, we can find p(11x), p(2ix), etc.,
i.e. the probability that a given test point x belongs to a particular class.

We are free to set the threshold or cutoff which determines the minimum p(1ix) at
which a given point x will be catagorized as class 1. By varying the threshold we can
vary the boundary between the class 1 and class 2 regions.

2.2. k-Nearest Neighbor Classifier

The k-nearest neighbor classifier determines the categories of any point in
discriminant space according to the category of its k-nearest neighbors. Each input vector
x in the training set is a vector in the n-dimensional discriminant space and belongs to
some known class. For convenience, choose just 2 classes. We calculate the
Pythagorean distance from each test point to every training point, i.e.

djj =1 xj - xj |

FINAL REPORT 40 Contract N00014-89-C-0257

where xi and xj are any two points in the training and test sets, respectively, and djj is
the distance between them. Then, for each test point, we find the k smallest distances, 1.e.
we find the k-nearest training points. The classification of each point is determined by
the categories of its k-nearest neighbors. A "majority rule" determines the category of a
site according to the majority of thecategories of its nearest neighbors. But, in general,
the category of a site can be based on any number of nearest neighbors m from 1 to k.
For example, for k=35, a site can be categorized as class 1 if at least 1, 2, 3,4, or all 5
nearest neighbors are class 1 (i.e. m = 1,2,3,4, or 5). In this case, the majority rule
corresponds to m=3. Thus, the correct classification of one class of inputs can be
enhanced at the expense of the misclassification of the other class.

3. Performance

3.1. Bayes-Gaussian

If the distribution of input vectors of each class in discriminant space is known a
priori, then the Bayes classifier (not necessarily Gaussian) is known to provide the
optimum classification. However, if the distribution of input vectors for each class is not
known a priori, and some distribution (e.g. Gaussian) is assumed, then the Bayes
classifier may fall short of this optimum, especially when the assumed distribution does
not match the actual one. The success of the Bayes-Gaussian classifier depends largely
on how closely the actual distribution of input vectors of each class resembles a Gaussian.
Since the classification scheme allows the adjustment of the spread of the Gaussian along
every dimension, any ellipsoidal region (cigar-shaped in 3-D) can be constructed to house
a particular class of inputs.

Therefore, the Bayes-Gaussian classifier performs well if the discriminant space is
composed of one simply-connected, convex region with simple boundaries corresponding
to each class of inputs. Conversely, it performs poorly if it encounters multiply-
connected regions corresponding to one class or regions with complicated boundaries,
especially concave boundaries. In Figure 1, we show some simple 2-D example
problems in discriminant space which the Bayes-Gaussian classifier will succeed or fail
in classifying.

In Example 1, we show two convex overlapping regions which belong to different
classes. The mean position of these regions can be the same or different and their shapes
can vary from very thin cigar shapes to spherical shapes. The Bayes-Gaussian will be
generally successful with this kind of problem, since it will choose the appropriate mean
and spread for each region and determine a probability that any given point belongs to
either class. However, its success in determining the classification of "difficult” points,
such as those in the overlapping region depend on how closely the actual distribution can
be approximated by a Gaussian. For example, homogeneous (uniform) distributions or
skewed distributions can cause misclassifications of points in overlapping or near
boundary regions.

In Example 2, we have introduced a simple cross-like region of black dots
enclosed in a white dot region. The Bayes-Gaussian will fail in this problem for two

»

FINAL REPORT 41 Contract N00014-89-C-0257

reasons: The cross is a “concave” region, and the spread in the distribution of black dots
is not uniform in each direction. In other words, the mean position of the distribution of
the black dots can easily be determined to be the center of the cross but the spread in the
horizontal and vertical directions are ambiguous: Near the center the spread in either
direction is large but away from the center the spread in one direction becomes tight. If
the classifier picks a tight Gaussian for the black dots, then it will miss the ones at the
points of the cross; if it picks a broad Gaussian, then it will misclassify white dots near
the boundary as black.

In Example 3, the Bayes-Gaussian classifier will fail terribly since the mean for
thedistribution of either black dots or white dots will fall inside the other region! Even
though the distribution of both black and white dots is simple and well separated from
each other, there is no accurate way of fitting one Gaussian to either distribution. The
only way to improve the performance of this classifier in this problem is to know, a
priori, that there are two regions of black and white dots and to know which dot belongs
to which region.

D 0 o

° o

0

Example 1 Example 2
00
@ @

(J
Example 3

Fig.1: Bayes-Gaussian Classifier Capabilites.

Example 1: Succeeds on two overlapping regions of different classes.

Example2: Fails on thin regions of one class imbedded inside regions of another class.
Example 3: Fails on multiply-connected regions whose mean falls within other regions.

3.2. k-Nearest Neighbor

As in the case of the Bayes-classifier, the success of the k-nearest neighbor
classifier can be related to the distribution of the inputs of each class in discriminant
space. Since the k-nearest neighbor classifier relies on the category of the nearest

FINAL REPORT 42 Contract N0OOO14-89-C-0257

neighbors to classify any vector, problems with regions which are well separated from
each other and with a high density of inputs are well suited for k-nearest neighbor
classification even if they are multiply-connected. By a high density of inputs, we mean
that the variations in the shape of the boundary and the size of the regions is sufficiently
greater than the distance between inputs.

Conversely, if the level of noise in the input vector is sufficiently large to cause
mixing of input points near the boundaries, or if there aren't enough input points across or
inside a region, or along a boundary, then the performance of the k-nearest neighbor
classifier will be diminished. We show 2-D examples of appropriate and inappropriate
problems for the k-nearest neighbor classifier in Figure 2. Note that if the input vectors
are sufficiently sparse or noisy, nearest neighbors may belong to different classes and the
classification may fail.

In Example 1, we have repeated Example 3 of Figure 1 to show that multiply-
connected, well separated regions can be handled well by the k-nearest neighbor
algorithm. The k-nearest neighbor classifier does not attempt to fit a distribution onto the
data and only cares about the local distribution. If the local distribution is unambiguous,
the classifier can handle multiply-connected regions.

In Example 2, we have presented a noisy boundary where black and white dots
are mixed as in Example 1 of Figure 1, but in this case, the result is the reverse. The
Bayes-Gaussian classifier sees a global distribution, determines a probability that a point
belongs to a particular class and can therefore ignore errors due to noise. But since the k-
nearest neighbor classifier only sees local distributions, it may misclassify a white dot
inside the white region as a black dot because its nearest neighbor is a black dot (for k =
1). By increasing k, misclassifications due to a "bad” nearest neighbor may be
eliminated, but if k is too large, the resolution of variations in the boundary may be lost
and "bad" points from the opposite regions may be included.

In Example 3, using a majority rule, each black dot in the long thin region will be
misclassified as a white dot since the nearest neighbor of every black dot is white and the
majority of any k-nearest neighbors of a black dot are also white. We canletk =4 or5
and then use the rule that if one of k neighbors is black, then the dot is classified black.
This will succeed in classifying the black sites as black but it will misclassify some white
sites as black. Note that if the black dots were sufficiently dense so that most black dots
had black neighbors then the k-nearest neighbor classifier would succeed. The
difficulties occur when the data is sufficiently sparse either across or within a region so
that the nearest neighbors are often of a different class. On the other hand, the Bayes-
Gaussian will succeed with this problem. It will choose a tight spread vertically and a
broad spread horizontally for the black dots.

=4

{

FINAL REPORT 43 Contract N00014-89-C-0257

O~o0 ®
o L
o o PP ®
Example 1 Example 2
o °©° o) o o
o) o o
Example 3

Fig. 2: k-nearest neighbor classifier capabilities.

Example 1: Succeeds with multipy-connected regions where nearest neighbors are always of the
correct class.

Example 2: Has difficulty with noisy boundaries when only one nearest neighbor is used.

Example 3: Fails with thin regions where the nearest neigbors belong to the other class.

3.3. Neural Networks

The neural network succeeds with all of the examples in Figure 1 and Figure 2.
Each node in the intermediate layer of the network can draw a hyperplane (a line in 2-D)
to separate regions of different classes. Given enough nodes, the neural network can
form convex or concave, multiply-connected regions with complicated boundaries as
needed, and it can do it within the same problem. The example shown in Figure 3
combines concave and convex regions, stringy regions with sparse data and a noisy
boundary into the same problem. Both the Bayes-Gaussian and the k-nearest neighbor
classifier would fail to varying degrees with different parts of this problem as already
described. The neural network will draw a line (hyperplane) at each boundary and it will
use two or more lines to fit curved boundaries (like the bottom curve in Figure 3). Care
must be taken not to "overlearn” noisy boundaries, otherwise the neural network may
draw a complicated curve or form isolated regions around noisy points in the training set,
instead of the straight line shown at the noisy boundary in Figure 3. Therefore, with
noisy data, it is important not to train the neural network too long.

FINAL REPORT 44 Contract N00014-89-C-0257

(o]
o © ° o
Stringy region (o] (o]
NN o © °
-~ - i
o] (o]
o o °
(o)

o] (o) (o] (o]

Noisy boundary
N

Multiply-connected / ®
regions L ® L ° [

N e ®

Concave boundary —— o

Fig.3: Example of a difficult classification problem which combines features than foil both Bayes
Gaussian and k-nearest neighbor classifiers, but can be solved with a neural network.

The particular geometry of the class regions in discriminant space gives a good
indication of the number of intermediate levels and nodes needed to solve the problem.
More complicated boundaries or a larger number of separate regions will require more
hyperplanes and therefore more nodes. The time or the number of learning iterations
needed to achieve a sufficiently successful classification also grows with the complexity
of the geometry and is discussed in the next section.

4. Time and Storage

4.1. Bayes-Gaussian

Training the Bayes-Gaussian classifier requires the calculation of the averages of
each input discriminant, the covariance matrix of each class and their inverses. The main
difficulty in implementing the Bayes-Gaussian classifier is in calculating the inverse and
the determinant of the covariance matrix C. If many of the elements ¢f C turn out to be
near zero or nearly the same, the matrix will be singular or the determinant may be
extremely small. In such cases, the covariance matrix can be decomposed, and then
inverted approximately. Let n be the number of discriminants and N be the number of
points in the training set. Finding the averages of the inputs <x> involves an iteration
over the number of inputs n for each point in the training set, a total of nN iterations. For

-

;-

FINAL REPORT 45 Contract N00OQ14-89-C-0257

each training point, the covariance matrix, C, requires iterating over both indeces, or n2 N
iterations for the entire training set. If C is nearly singular, then the decomposition
process involves 10 n3 iterations. The evaluation of the inverse after the decomposition
takes n3 iterations. Altogether, the training time for a Bayes-Gaussian classifier takes on
the order of n2 N+n3 iterations with an additional 10 n3 if the decomposition of C is
necessary.

Also, this classifier must store the 2n class 1 and class 2 averages of the
discriminants, the determinants of the class 1 and class 2 covariant matrices (2 numbers)
and the inverse of the covariant matrices which have 2n2 elements combined. Therefore,
the total storage requirement is 2n2 +2n +2 = 2n2. During computation it is necessary to
store the covariance matrices and their decompositions, of the order of 6n2 + 0O(n)
numbers.

Classifying a test point x(a) mainly involves the evaluation of the Gaussian
probability distribution which requires n? iterations to evaluate the products (x(a) - <x>)
C1 (x@a) - <x>) in the exponent of the Gaussian distribution p(x!1). These storage
requirements and the number of iterations necessary for training and testing are listed in
Table 1 along with the k-nearest neighbor and neural network classifiers.

4.2. k-Nearest Neighbor

The k-nearest neighbor classifier requires no training since it is not reducing the
number of training set inputs (e.g., replacing them with a smaller number of prototypes).
The algorithm must store the positions in discriminant space of all the input vectors in the
training set (n discriminants per input vector) and its desired output (class 1 or class 2)
permanently, which requires storing (n + 1) N numbers, where N is the number of points
in the training set. Testing is carried out by comparing with all points in the training set.
To classify a given point, the k-nearest neighbor classifier must calculate the distance
from that point (an n-dimensional vector) to every other point (another n-dimensional
vector), which involves nN iterations. Then, these distances must be sorted to find the k
shortest distances, which requires kN plus k (k - 1) iterations. Therefore, the total number
of testing operations scales with Nas(n+ k) N +k (k- Dor=(n +k) N for N >> k. For
the typically large numbers of inputs, this testing time can become prohibitive. The
storage requirements and the number of training iterations are listed in Table 1.

4.3. Neural Network

After the learning process, the neural network stores all its information in the
weights between the nodes, and the thresholds of non input nodes. The input layer has n
nodes corresponding to the n-dimensions of each input vector. For a three layer network
we let the second and third layers have n’ and n" nodes, respectively. In a network with
connections only between adjacent layers, there will be a total of nn' + n'n" weights and n'
+ n" thresholds to store. Typically, for problems in which many inputs are categorized
into a few classes, n' < n and n" << n, which makes this storage requirement smaller than
the Bayes-Gaussian storage needs, i.e.,

FINAL REPORT 46 Contract N0OO014-89-C-0257

nn' + 0(n', n", n'n") < n2 + O(n), n>n
and it is smaller than the k-nearest neighbor storage requirement for large N, i.e.,
nn' + 0(n’, n", n'n") < nN, N>n'.

The learning time of the neural network is difficult to estimate. With a standard back-
propagation network, at the introduction of each input, nn' + n'n" weights aad n' + n"
thresholds must be modified. If it takes g iterations over the entire training input N to
reduce the error below a desiredvalue, then the learning time will scale approximately as

[

gN(nn' + n'n").

However, the value of g depends on the particular problem and there is currently no
general method for determining g. The neural network may take longer to train than the
Bayes-Gaussian, i.e.,

gN(nn' + n'n") > 10n3 + 0(n2)
if gNn' > 10n2,

but this is not necessarily true.

5. Conclusions

Through a geometrical representation of the categorization problem, we have
described and illustrated general types of problems that can be handled by various
classifiers. If objects of different classes, represented by vectors in discriminant space,
separate into regions, then discrimination is theoretically possible. The Bayes-Gaussian
classification scheme is suited to problems in which each class of objects separates in
discriminant space into a single, convex region (with or without noisy boundaries). It is
not successful with problems in which a class of objects is represented by multiply-
connected regions or if the regions are concave, as shown in example 2 of Fig. 1.

On the other hand, the k-nearest neighbor classifier succeeds with problems
containing concave regions or multiply-connected regions corresponding to one class, but
it may fail if it encounters noisy boundaries between classes or stringy regions or sparse
data across a region in discriminant space, as illustrated in Fig. 2.

The superior performance of the neural network results from its versatility: It
does not assume any particular distribution of the inputs as does the Bayes-Gaussian
classifier, nor does it assume that proximity in discriminant space determines the class of
an object as does the k-nearest neighbor classifier. Instead, the neural network draws
boundaries between regions by combining a sufficient number of hyperplanes to
accurately match all boundaries. To do this, it requires some learning time, during which
it adjusts the positions and orientations (thresholds and weights) of the hyperplanes in
order to best match the given boundaries between all regions.

-@-

~

re
5

FINAL REPORT 47 Contract N0O0014-89-C-0257

Furthermore, complicated problems which may contain many different kinds of
regions and boundaries, such as that shown if Fig. 3 (especially if they are unknown a
priori), can only be handled by a versatile classifier which is able to design different
regions and boundaries to suit different parts of the problem.

Also, in considering storage and time, we have shown that the k-nearest neighbor
classifier's storage and time requirements scales with N, the number of inputs. For large
N, it is advantageous to store a reduced set of numbers rather than the entire input set to
avoid this problem, which both the Bayes-Gaussian and neural network classifiers do.
On the other hand, the storage requirement and matrix inversion calculation time of the
Bayes-Gaussian classifier scale as nZ and n3, respectively, where n is the number of
discriminants. This may become prohibitive if n is large. The neural network only needs
1o store the weights and thresholds. Therefore, its storage requirement does not scale with

the number of inputs and its time requirement does not necessarily scale with n2. (In
some problems, the learning time may be shown 1o scale linearly with n.) Itis difficult to
give a general expression for the learning time, since it depends on the number of
iterations over the input set necessary to converge to an acceptable solution, g, which is
usually not known a priori.

Since the performance of the neural network always matches or surpasses that of
either the Bayes-Gaussian or the k-nearest neighbor classifiers, and its storage and time
requirements are ofter: lower for the static classification problem, it is almost always the
best choice among these three classifiers, particularly for complicated problems or
problems with large inputs and large numbers of discriminants.

| &

FINAL REPORT 49 Contract N0O0O14-89-C-0257

Fuzzy Logic and the Relation to Neural
Networks

Dr. Gregg Wilensky

September 7, 1990

Research sponsored by DARPA and ONR under contract N0O0014-89C-0257.

1. Introduction

Fuzzy logic is a semi-empirical description of the application of logical reasoning
to ill-defined sets. Its utility lies in the ability to impose a logical structure without
requiring the strictness of logical truth and falsity. Let me clarify this by giving an
example based on a recent application by Sony Corp. of a fuzzy logic expert system for
optimization of the image on an advanced television monitor!6. 248 regions on the image
are monitored 60 times a second. Using prerecorded fuzzy logic rules, changes are made
in picture contrast, hue, color saturation and detail for each of the regions. As TV
reception changes, the modifications compensate to get the "best” possible picture. In
addition, because the image is monitored and modified locally, good detail can be
maintained in one portion of the image while another portion is smoothed out to get rid of
speckle (in a portion of the sky for exaiaple). Although the details of the algorithm have
not been released, one can envision how it might work. For each region of the image
sampled, one has a number of image pixels, their intensity and color values. Every such
image is ranked into various categories or sets. Example sets might be Sky-like,
Background, Detailed, as well as more general categories such as Noisy, Smooth,
Interesting, Monotonous, Bright, Dim. The logic of the Advanced Signal Correction
system would then include statements such as: If Monotonous and Noisy then smooth
out the image, decrease contrast. If Sky-like and Noisy and Dim then do the same and
increase blueness. If Face and Smooth and TVisOld then increase contrast 20% else if
Face and Smooth and TVisNew then increase contrast 10%.

These concepts such as Smooth, Noisy, etc. are not well defined. In "Fuzzy"
terminology they are said to be fuzzy sets. What distinguishes a fuzzy set from an
ordinary set is that a fuzzy set can have partial membership. In ordinary set theory, an
element is either a member of a particular set or it is not. In fuzzy set theory, an element
can be a 30% member, for example. Every element is given a membership number for
every set which ranges from 0 to 1. 0 corresponds to "not a member” and 1 corresponds

16R, Doherty, Electronic Engineering Times, April 30, 1990, pg. 4.

FINAL REPORT 50 Contract NO0O14-89-C-0257

to "definitely a member”. Anything in-between is a partial member. Now what does
partial membership mean anyway? Consider the set of noisy images. To calculate
whether a given image should lie in the set one might calculate the mean squared
deviation of all the pixel intensities from the mean intensity. Let's call the square root of
this number divided by the mean intensity the noise-to-signal ratio v. If we were
working with ordinary set theory we might say that the image lies in the Noisy set if v is
greater than some number, let's say 0.7. Now this number is quite arbitrary. After all,
who's to say that 0.6 or 0.5 are not almost as good cutoffs? Or more importantly, for the
task of adjusting the television set, perhaps the set should be adjusted slightly if v is
greater than 0.5, even more if v is greater than 0.6 and even more if v is greater or equal
to 0.7. Now this could be done by simply including a lot of if-then statements: if the
value of v lies in such and such a range then adjust the television parameters by such and
such an amount. But then the simple logical rules that one started with (if the image is
roisy then adjust the set) becomc more and more fragmented. It would work just as well,
its just more complicated. Another alternative is to find a function f(v) which determines
the adjustment needed. This works just as well but now the logical rules are obscured.
The advantage of the fuzzy set approach is that the logical rules are specified (so that a
human can maintain control over and understanding of the TV operation) and yet a range
of possibilities is allowed; one does not need a bunch of if-then statements to represent
the concept of noisiness.

The membership value of an element in a fuzzy set is interpreted as the possibility
that the element belongs to the set. It is distinct from a probability!”: probability refers
to an ensemble of elements each one of which either does or does not belong to the set.
By counting the number of elements which do belong to the set one obtains the
probability that an element of the ensemble lies in the set. On the other hand, with a
fuzzy set, a given element does not necessarily lie in or outside of the set. Any single
element has a possibility of lying in the set and a possibility of lying outside the set. The
uncertainty in these possibilities is the uncertainty in the definition of the set rather than
the uncertainty of the outcome of a given event or element of the set.

The utility of describing fuzzy sets lies in the ability to describe logical operations
on the sets which make reasonable sense and which reduce to ordinary logical rules of
non-fuzzy sets when the sets are indeed not fuzzy (i.e. they consist only of elements
which are either O or 1). As an example, consider the union of two sets DS and LE,
dark-skinned and light-eyed individuals. These concepts are not rigidly defined and so
are prime candidates for fuzzy sets. If these were ordinary sets, the intersection DS &
LE would consist of all individuals who have both dark skin and light eyes, i.e. the
overlap between the two sets of well-defined elements, the set of elements which have
membership equal to unity in both set DS and set LE. For fuzzy sets, a modified
definition is needed and is best expressed in terms of the element membership or
possibility functions. pi(x) is the possibility that the element x lies in the set DS, and
similarly pp(x) is the possibility that element x lies in the set LE. These are numbers
which lie between 0 and 1. The possibility function p1 & 2(x) for the intersection of the
two sets is defined (somewhat arbitrarily) as the minimum of the two possibilities:

7 There are a lot of arguments in the literature about whether this concept of possibility is really different
from probability. A discussion is given in the following reference:
E. H. Mamdani, B. R. Gaines, ed., Fyzzy Reasoning and its Applications. 1981, Academic Press, N.Y .,

pg. 8.

FINAL REPORT 51 Contract N0OO0O14-89-C-0257

P1 & 2(x) = min(py(x), pa(x)).

For ordinary sets, pj(x) and p2(x) are either 0 or 1 for every element x. Then the
minimum is unity only for those elements which are both members of set 1 and members
of set 2; i.e. this definition reduces to the standard definition of the intersection for
ordinary sets. In a similar manner, the possibility function for the union of two fuzzy sets
is defined as the maximum:

P1 + 2(x) = max(pi(x), pa(x)).

These definitions are illustrated in Figure 1. While these choices for fuzzy set
intcrsection and union are simple and reduce to the proper definitions for non-fuzzy sets,
they are not the only possible definitions that work. Another possibility for the
intersection is py & 2(x) = p1(x) * p2(x) for example. The definitions can be extended

to more than two sets. For example,

P1 + 2 + 3(x) = max(p(x), p2(x), p3(x)).

Nembership Possibikity p(x)

70

Element x

Fig. 1-a

FINAL REPORT 52 Contract NOOO14-89-C-0257
% C.4= { ! 2
. H
Fig. 1-b

Figure 1: Example possibility functions. Fig 1-a: Examples for two fuzzy sets. Fig 1-b: Examples for
the intersection and union of the fuzzy sets shown in Fig. 1-a.

Another concept which is needed for fuzzy sets in order to quantify a statement
such as "if one has light skin then one is likely to have dark eyes” is the notion of
implication. A implies B (shorthand, A— B) means that if A is true then B is true. That
is not to say that A is necessarily causally related to B, only that A and B are correlated.
In the ordinary crisp logic this is translated into the following truth table:

PA PB PA-B

0
0
1
1

-0 = O

1
1
0
1

In other words, the statement A— B is taken to be true unless A is true and B is false.
Since the truth table is reproduced if one equates ppo—g = min(l,1+ pg - pa), this
equation is often extended to tizzy sets to give the possibility that A(x) implies B(x’).
As an example, consider the proposition mentioned above: "light skin implies dark eyes".
Let set 1 be the set of light skinned people. It will be defined in terms of a reflectance
measurement which gives a value x for each person. The possibility function pj(x) then
defines what we mean by light-skinned. It may be a Gaussian distribution centered about
a reflectance of 0.7, for example. Dark-skinned could be represented by a possibility
function which is a Gaussian distribution centered about a reflectance of 0.3. For most
concepts of this type these distributions are not well defined. We have a rough idea of
what they should look like, but can't really quantify them other than by guessing. In a
similar manner we will take the possibility function pa(x’) to represent dark eyes, where
x' is some quantifiable measure of eye color intensity. Given a person with skin tone x
we can estimate the possibility that he or she will have eye color intensity x'as: min(1, 1
+p2(x) - p1(x)).

»;

™

FINAL REPORT 53 Contract N0O014-89-C-0257

While the above truth table is standard logic it has problems. The two situations
where there is no information as to the truth of the implication (the first two rows) are
given truth values of 1. In ordinary logic this is natural; the value has to be either 0 or 1
and it is not necessarily false. But a better representation is available with fuzzy logic.
We can assign a possibility of 1/2 to these situations to represent the fact that we simply
have no information. Thus a truth table which more accurately reflects our knowledge
would be the following:

PA PB PA-B

0 0 0.5
0 1 0.5
1 0 0
1 i 1

One could translate this into a formula such as

PA(X) = B(x) = min[1, 1 +pg(x) - pax)] - 0.5[1 - pax)].

For the application of fuzzy logic television adjustment, such formulae can be used to
take an input image represented by x and determine the output adjustment x'. Morc
complicated logical expressions can be built with combination of "and", "or" and
"implication”.

2. An Example; the Fuzzy Washing Machine:

To demonstrate *he approach an example of a fuzzy washing machine controller
will be shown using a plausible set of rules. The washing machine will be assumed to be
capable of measuring and adjusting water temperature, wash-cycle time, detergent
concentration and water murkiness. Each of these will be assumed to be described by
fuzzy sets. For example, water temperature may be cold, lukewarm or hot (finer
gradations such as very hot, slightly hot may be useful but will not be considered here for
simplicity) Thus, if T is the water temperature at a given time, then ppo(T) describes
the possib.lity distribution for the hot water set. Similarly, pjykewarm(T) and pcold(T)
describe the lukewarm and cold water sets. Water cleanliness may be measured by a light
transmission measurement which gives a value 1 for the transmissivity and we will
consider two fuzzy sets, clean and dirty, described by the possibility functions pciean(t)
and pdiny(‘t). The wash time t will be described in terms of the sets long, medium and
short: plong(1). Pmedium(t) » Pshordt)- Detergent concentration n will be described as
strong or weak: Pgrong(n) » Pweak(n)- And finally, the whiteness w of the load will be
described by pwhite(w) and pdark(w) . These fuzzy sets are summarized below:

water temperature: T hot lukewarm cold

FINAL REPORT 54 Contract N0O0014-89-C-0257

water cleanliness: t clean dirty

wash time: t long medium short
detergent concentration: n ~ weak strong

clothes whiteness: w white dark

Consider the following set of fuzzy logical rules made up by a supposed expert in
clothes washing:

if (the wateris dirty and the detergent concentration is weak) then
change the detergent concentration to strong

if (the water is dirty and the detergent concentration is weak and the wash time is
short) then
change the wash time to long

if (water temperature is cold and clothes are white) then
change water temperature to hot
or
if (water temperature is hot and clothes are dark) then
change water temperature to cold.

In an obvious shorthand notation, this could be written as
if (dirty & weak) then strong
if (dirty & weak & short) then long

if (cold & white) then hot
or
if (hot & dark) then cold.

These statements need to be translated into a form involving the possibility
functions so that the controller can adjust the settings for water temperature, wash time,
and detergent concentration. This is done in the following manner (different authors use
slightly different variations of the approach shown here):

Given a set of input measurements T, 7, t, n and w and given the above set of
fuzzy logical rules,we wish to find the desired output values for T, t, and n; that is, we
would like to adjust the water temperature, the wash time and the detergent concentration.
Both the input parameters and the output settings are described by fuzzy sets. There is a
possibility for each value of the output parameters. To calculate the actual value to set
for the temperature, for example, we will calculate the possibility function for T given the
inputs and the logical rules. The value of T when averaged over the possibility function
could provide the desired output value:

Toutput = <T> = [IdT' pm T/ UdT' p(T] .

An alternative form

s 9

AN

-

FINAL REPORT 55 Contract N00014-89-C-0257

AToutput = Uar 121 7Y/ [Jar pery]

gives the change in temperature such that when there is no knowledge, i.e. when p(T') =
1/2, there is no change. The term '-1/2' subtracts out a median temperature. p(T') is the
possibility that the water temperature should be set equal to the value T given the set of
input parameters and the set of fuzzy logical rules. The other parameters are treated in a
similar manner. Our objective then is to find the possibility functions p(T"), p(t), and
p(n’) given the set of input measurements and the set of logical rules. A prime is used
here to distinguish the input parameters(unprimed) from the output variables. We first
reduce the calculation to the basic set of implication possibilities p[A&B—- C] (the
possibility that if A is true and B is true then C is true) by recognizing that the ‘or'
statement which ties together the last two 'if-then' statements can be represented by taking
the maximum of the possibility functions for each 'if-then’ statement. This leads to the
following:

p(n’) = p[dirty(‘l:) & weak(n) — strong(n')]
p(t) = p[dirty(t) & weak(n) & short(t) - long(t’)]

p(T") = max] p[cold(T) & white(w) - hot(T")], p[hot(T) & dark(w) — cold(T)]].

The basic possibility functions in turn can be expressed as

p[A &B —»C] = min[l, 1+pC-PA & B] -0.5[1 “PA & B] , where
PA & B = min(pa, pB)-
Thus,

p(n) =min[1, 1 + pgrrong(n’) - min(pdirty (%), Pweak(™)]
- 0.5[1 - min(pgirty (%), Pweak(®)],

p(t) = min[1, 1 + plong(t) - min(Pdirty(®), Pweak(®), Pshort(®)]
-0.5[1 - min(pgirty(x), Pweak(®: Pshort(®))],

p(T) = max { min[l, 1 + phot(T") - min(peold(D), Pwhite(W))]

FINAL REPORT 56 Contract N0O0014-89-C-0257

-0.5[1 - min(peold(T). PwhiteW))], min[1, 1 + peold(T)
- min{ phot(T). pdarkw)] - 0.5[1 - min(phor(T). paarkw))] } -

Using the above expression, p(n’) can be calculated over the range of values n' that
the detergent concentration can take on. The average value of n' over this possibility
distribution minus the median concentration gives the change in concentration for the
new setting. Consider the case in which the transmissivity ¢ is small so that the water is
very dirty and the detergent concentration n is small so that the concentration is very
weak. Then the possibilty that the water is both dirty and weak will be large. The
possibility function for the implication dirty&weak — strong(n') will then follow the
possibility distribution strong(n’). If n'is small, the concentration is weak and the truth of
the implication will be small. If n' is large, the concentration is strong and the truth of the
implication will be large. For this situation then p(n’) = pgirong(n’) in a rough sense.
The average value of n'would then correspond to a characteristic strong concentration.
The concentration would be changed to this value if the first representation described
above is used. If the second representation is used then n' would be changed by an
amount proportional to the difference of the characteristic strong temperature from a
median temperature. On the other hand, when the transmissivity is large or ‘he
concentration is large, the truth of the implication will be set close to 1/2, independe . of
the value of n'. There is no knowledge about the implication and the output value of n'
will be unchanged: An' = 0 if the second representation is used. If the first representation
is used n' will be set to a median concentration. In a similar manner the change in the
wash time and the water temperature can be calculated and adjuvsted to the average
possible value.

Given a reasonable set of rules for controlling the washing machine, the next step
is to better define the fuzzy sets by giving the possibility functions a specific functional
form. Typically one chooses a simple function with a few adjustable parameters. An
example would be a Gaussian function for the lukewarm water temperature distribution:

Plukewarm(D = po exp[-(T-Tp)2/262].

The distribution function for hot and cold water temperature might take the forms

Phot(D = po/[1 +exp[-(T-Thopro'] 1,

Peold™ = p"0/[1 +exp[+(T-Teora¥o"]]

T Gy 9

v

FINAL REPORT 57 Contract N0O0014-89-C-0257

These examples are shown in Figure 2 below.

b —
60 80 100 120

Temperature (deg F)
Figure 2: Example possibility distribution functions for water temperature fuzzy sets.

The difficulty in this stage is in choosing good functions and parameters for all
the fuzzy sets. It typically involves a lot of guesswork and trial and error testing. One
would choose a set of parameters for all the distribution functions and then run the
washing machine (or a simulation of the washing machine) to evaluate how well the
clothes come out. If something is not right one would try to figure out why and try
adjusting the fits to correct it. Running the machine involves repeated sampling of the
water temperature and cleanliness, clothes whiteness, detergent concentration and wash
cycle setting. For each sampling, output values are calculated for detergent
concentration, water temperature and wash time and these are adjusted.

Neural networks offer a great advantage at this point. For control situations in
which one can quantify the performance (a simulation of the washing machine might
quantify the cleanliness of the clothes after washing, for example), the neural net can be
used to optimize the choice of functions and parameters. A schematic example is
illustrated in Figure 3 which captures the spirit though not the details of the fuzzy logic
rules. The feedforward neural net (which can be trained with the back-propagation
algorithm) is used to connect each parameter with each node describing a fuzzy set.
These mapping subnets thus have one input and one output node and provide a functional
description of the possibility distributions. For example, one subnet will have an input
node which represents water temperature and an output node whose value is the
possibility function for the 'hot' fuzzy set. This subnet performs the mapping from T
onto phot(T). A separate subnet will map T onto pcold(T). These subnets can be
pretrained to provide a rough estimate of the possibility functions, such as the Gaussian
funct‘on discussed above. They can then automatically be optimized by training the
whole network to minimize an error function. In the washing machine example, one
might train the net based upon simulations of desired wash cycles.

FINAL REPORT 58 Contract N00014-89-C-0257

To complete the whole neural network yet another subnet could take as input all
the appropriate fuzzy subset nodes (the outputs of the mapping subnets) and implement
the fuzzy logical rules which have been decided upon. There are several possible ways of
implementing this. One example is shown in Figure 3 in which the input possibility
functions are distinct from the output functions.

output parameter values

input parameter values

Figure 3: Example of an integrated fuzzy logic neural network. The circles represent neural
network nodes. For the input nodes the nodal values are the input values. For the
output nodes the nodal values give the recommended values for these control
parameters. The large shaded nodes represent the possibility distribution functions
for the fuzzy sets. The neural subnets in the lower layer map input parameters to
fuzzy set possibilities. Additional subnets are shown which implement the fuzzy
logic rules 'and' and 'or’. The top subnets determine the output values in terms of
the fuzzy set possibilities.

By training the whole network, both the input and the output mappings can be
optimized. In addition, one could allow variation of the network parameters which
implement the logical functions 'and’, 'or', and 'implies’. The degree to which these
remain unchanged indicates the validity of the logical rules. The network performance
could be compared with a fully interconnected network to assess the extent to which the
fuzzy logic rules achieve a good solution to the problem.

The same set of fuzzy rules shown above could be approximately implemented by
an expert system approach in which ordinary logical rules are used. But the same set of
rules that could be described by three simple equations for the fuzzy possibility
distribution would require implementation of many rules of the form: if (0.3 <1< 0.4
and 0.5 < n < 0.55) then n' = 0.3. Finer and finer degrees of distinction require more and

FINAL REPORT 59 Contract N0O0014-89-C-0257

more rules. Nor does this approach allow one to vary a few parameters to optimize the
solution as can be done with fuzzy logic or a neural network.

3. Summary

The popularity of the fuzzy approach lies in the fact that it is a simple method of
extending the expert system approach (specify a bunch of if-then statements to describe
the problem) to the real world situation for which the ideas (objects or sets) used are not
well defined. Togai Infralogic Inc. (TIL) of Irvine, California has developed a fuzzy
focussing system for Canon 8mm camcorders!8. Seven input variables such as the
frequency distribution of the CCD signal, and its derivative are used; if the image is
becoming more focused there will be more high frequency structure in the CCD
distribution. Using 20 fuzzy rules, the system produces one output: the focus level. A
conventional expert system approach would require approximately 340 rules. The fuzzy
program is packed in 2 kbytes of read-only memory and is used to check the focus 30
times a second. A prototype system was developed in less than 7 days. But it took
considerably more effort by 3 experts using trial-and-error determination of the
possibility functions for the input variables. Another application by the same company,
produced for Mitsubishi Heavy Industries Inc., was a fuzzy controller for large office
building heating and cooling. The system uses 25 fuzzy rules for heating and 25 for
cooling. The inputs include room and wall temperature and their derivatives in time. The
initial rules were written in 3 days. The initial possibility functions were generated by
experts in about a month and another 3 months were needed to tune the system and
optimize performance. The system reduced heating and cooling times by a factor of 5
and improved stability by a factor of two (whatever that really means).

The above examples point out the utility of the fuzzy logic approach and the
speed and ease of generating a useful set of logical rules. The drawback of the approach
is the large amount of time needed by experts to "guess" good possibility distribution
functions and to fine-tune the system. Here is a prime role for neural networks which
offer the ability to automatically generate the possibility distributions and to fine tune the
system through back-propagation error minimization. A combined fuzzy logic/ neural
net approach could offer the benefits of having an imposed logical structure and an
optimized system with no need for the devotion of a lot of time by experts.

In summary, fuzzy logic is seen to offer the advantage of building-in logical
relations among fuzzily defined sets or ideas. Having defined a set of logical relations,
one can then calculate a mapping from a set of input parameters to a set of output
parameters which is in some fuzzy way based on the logical relations. This should be
contrasted with the typical supervised neural net approach in which one determines the
relation between inputs and outputs so that one minimizes the error made on some set of
data. The fuzzy logic approach offers a fuzzy understanding of the logic rules involved
(they are put in by hand) but does not guarantee that this is the best solution that
minimizes the error made. On the other hand, the neural net approach does guarantee

181 5. Schwartz, "Fuzzy Systems in the Real World”, A/ Expert, August 1990, pgs. 29-36.

FINAL REPORT 60 Contract N0O0014-89-C-0257

error minimization but does not provide a simple understanding of any overlying logical
rules which might generate the mapping. They are complementary approaches. A
natural extension of both methods is a unified fuzzy neural network in which one builds
the logical operations as neural net components and then trains the net. One can test the
validity of the logical constructs by observing whether they change as the net is trained.
If the logical operations are still valid after training then one has a network in which one
understands the fuzzy logical structure and yet still minimizes the error. In addition, the
neural network can be used to determine the possibility distributions directly rather than
the usual method of trial-and-error guessing. These ideas are described further in
reference 3. Although there are several papers in the literature combining fuzzy logic
with neural nets, the ability to test and refine the logical rules remains to be implemented.

One might ask: why bother with fuzzy rules? why not just use a neural network or
a more standard control system? The use of fuzzy rules do offer one clear advantage,
apart from the emotional impact of simply allowing a human to understand what the
system is doing: new rules could be added relatively easily without having to completely
redesign and retrain the neural network. A demonstration is needed of these advantages
of a combined fuzzy logic neural network.

FINAL REPORT 61 Contract N0O0014-89-C-0257

The Reduced Coulomb Energy (RCE)
Classifier

February 26, 1990

1. RCE Supervised Learning Algorithm (In a Nutshell)

Consider the 2-D input space pictured in Figure 1A, where each input vector is
represented by a dot: a black dot is an input belonging to class 1, and a white dot is an
input belonging to class 2. The basic learning procedure of the RCE algorithm consists
of creating prototype vectors of each class which coincide with some input vectors of that
class, building hyperspheres of that class centered around each prototype, and then
shrinking the hyperspheres until only inputs of the correct class are within each
hypersphere. In other words, hyperspheres are created and shrunk until all class 1 inputs
are covered by only class 1 hyperspheres and all class 2 inputs are covered only by class
2 hyperspheres. (The final picture is shown in Figure 1B.)

2. RCE Algorithm (More Precisely)

Begin with a set of input vectors x; where each component of the vector
corresponds to some discriminant that may be useful in determining the appropriate class
C; of the input vector. Select the training set from these input vectors x; and their

corresponding correct classes Cj. Define a set of “prototype” vectors pj, as yet
undetermined in number and vaiue, which will serve to define the regions of each class.
Choose an initial radius ry.

Let the first prototype p} equal the first input vector X1, pj = X1, and let the first
"hypersphere” hy have its center at p; and radius r] =rg. Next, introduce each input
vector xj with its corresponding classification C; one at a time. For each i, search for all
hyperspheres hjwhich enclose x;, i.e., all hj such that

Ix; - pjl <15

Each hypersphere h;j which encloses x; corresponds to some class Cj:
If G = C;, do nothing.
If C; =/ Cj, shrink hypersphere h; until x; lies on the sphere, ie:reduce rj until Ix; - pjl =1 .

FINAL REPORT 62 Contract N0O0014-89-C-0257

If no hj encloses x;, then create a new prototype and its corresponding hypersphere by
setting it equal to x;, i.e.,

Pk =X .

Continue this process of shrinking rj and creating new prototypes pg until each input is
categorized in its correct class. This algorithm is illustrated in Figure 2.

°
°. . ®
o®
°° g0y g0 o°
o ° bR
o °© o o ®o .. °
o (-] o® e% Py o
L ° [(-4 ‘ o *
®e e ®o o O ° o© 8 o ° ®
? c © oo %
& o ° © ° °
. ® () o © ° e
®e ® ° ° ° P e []
® o oo o® o °®
®
@ Inputs of class 1 ~— hypersphere of class 1
© Inputs of class 2 — hypersphere of class 2

Fig. 1: Illustration of the RCE learning algorithm:
A) 2-dimensional input vectors are represented as black dots if they belong to class 1
and black dots if they belong to class 2.
B) RCE creates circular prototypes centered about sample input points and then
shrinks them until only one class is included within the prototype radius.

(n

‘*

=

&

FINAL REPORT 63 Contract N0O0014-89-C-0257

® Prototype, class 1
0 Prototype, class 2
M Newinput class |

Case 1: The new input is inside hypersphere(s)

of the correct class No change

Case 2: The new input is outside
all hyperspheres

Case 3: The new input is inside hypershpere(s) L
of the correct class and hypersphere(s) Shrink incorrect hypershpere(s)
of the incorrect class until it no longer includes the input

(-6 2

Case 4: The new input is inside hypershpere(s)
of the mcorrect class

Fig. 2: RCE network learning algorithm.

Note that:
1. More than one prototype may represent a class.
2. All of space is not necessarily enclosed by hyperspheres, some gaps may
remain.
3. Hyperspheres of the same class can overlap.
4. Hyperspheres of the opposite classes may overlap if none of the inputs
presented during training fall in the overlapping region.

o @

yY

»
FINAL REPORT 64 Contract N00014-89-C-0257 .
: 5
3. Neural Network Implementation »
To construct a neural network RCE classifier, we let the input nodes (1st layer) ¥
correspond to the components of the input vectors x; and assume that they are
normalized, i.e.,
L
xjl = 1.
Let the weight vector A; to each node j in the intermediate (second layer) correspond to a
normalized prototype p; times a parameter A; = o
»
Aj=2ip;
Since the vectors xj and pj are all normalized and lie on an n-dimensional hypersphere,
the distance between any two vectors can be measured by the angle between the vectors,
@, which is related to the dot product of the two vectors: ’
X - pj = Ixjl Ipjlcos ¢= cos .
The input to the jth neuron of the second layer is:
» q
Aj.xi=Ajpj - X
= Xj cosQ,
and is a measurement of the distance between the input and the prototype j times the
parameter A;.)
In order to determine whether or not x; is in the hypersphere hj, in the RCE
algorithm, we compared the distance between pj and x; to the radius 1. In the neural
network, we can compare cos ¢ , which is a measure of the distance between pj and x; to
a radius 1, or equivalently, we can compare Xj cos ¢ to a constant threshold 6. Let the ’
output of the jth intermediate layer neuron be
Aj . x if Aj.x;j>0
=0 if Aj.xj<6. »
The output of a second layer neuron, which represents some prototype, indicates whether
or not a particular input lies within the hypersphere of that prototype. If the jth neuron
prototype is of the incorrect class and its output is non-zero, in the RCE algorithm, we
reduced 1j to shrink the hypersphere h;; in the neural network, we reduce l until Aj . x; is
equal to 6 and the output of the jth neuron is zero. Note that since prototypcs can have ’
overlapping hyperspheres, more than one neuron on the second layer can have a non-zero
value.
®

FINAL REPORT 78 Contract N00014-89-C-0257

Olfactory Cortex I

FINAL REPORT 65 Contract N00014-89-C-0257

In the output (third) layer, each neuron represents a single class Cj. Itis
connected only to prototypes of that class. Thus, the second and third layers are pot fully
connected. In other words, all prototypes of class 1 are connected to the class 1 output
neuron only, all prototypes of class 2 are connected to the class 2 output neuron, and so
on.

Initially, there are no prototypes or weights. As a prototype is created, it is
connected to the appropriate class output and the connecting weight is set equal to 1.
There is no competition or inhibition between output cells. Their values are either zero or
non-zero; a single prototype has as much effect as many prototypes in that it fires the
corresponding output neuron. This neural network architecture is illustrated in Figure 3.

class 1 class 2 class 3

Output neurons:

Wi
class 1 prototype
neurons >

inputs .

class 2 prototype
neurons

Fig. 3: RCE neural network architecture

The neural network operates in much the same way as the algorithm: Introduce the first
input x;j, and suppose it belongs to class 1. Create the first neuron of the second layer,
corresponding to a prototype of class 1:

Ay=29x1, and Wy =1.

Now, introduce each input x; vector and its class C;=m, one at a time:

(1) If the correct class neuron (class m) gives a zero output, i.e., hyy = 0, then
create a new second layer neuron (kth neuron) corresponding to prototype py of class m,
1e., set

T
A
o
g
L}
°
&
°
°
Y
» (]
»

FINAL REPORT 66 Contract N0O0O14-89-C-0257

Ag = A X with 4 = A9

and set W . the connection between neuron k of the second layer and the neuron
corresponding to class m of the output layer equal to 1, i.e.,

Wim =1
(2) If an incorrect class output neuron, say class s, is activated, i.e.,
hg=/0 s=/m,

then shrink the hypersphere radii of all active incorrect prototypes until the class s output
neuron gives zero output, i.e., reduce A; until

hs = 0 .
Recall that Wi, = 1 if the kth prototype is of the mth class, and Wy, = 0 otherwise.

Testing can be performed on a set of inputs whose classes may or may not be
known. When the input is presented, the output node that is activated (i.e., has a non-zero
value) indicates the network's classification. If no output neurons or more than one
output neuron is activated, then the input will not be classified correctly. The first
situation can occur if some region of space was not covered during training and some
new test input(s) is located in that region. The second case can occur if some input in the
test set is located in a region of overlapping hyperspheres of different classes which were
not adjusted during training since none of the training input vectors was in the
overlapping region.

4. More General Hypersphere Classifiers

The more general hypersphere classifier allows moving and expanding in addition
to shrinking the hypersphere in the learning process. Moving allows a nearby prototype
vector of the correct (or incorrect) class to translate toward (or away from) a new input
vector, much like the Kohonen learning procedure. Expansion allows a nearby
hypersphere of the correct class to include a new input vector. In this way, prototypes do
not necessarily coincide with an input vector and the hyperspheres can be adjusted to
accommodate the data instead of creating new prototypes. The RCE network does not
translate prototype vectors and it does not expand hyperspheres; only the creation of new
prototypes and the shrinking cf hyperspheres is allowed.

The disadvantage with the general hypersphere classifier is that translation or
expansion of a hypersphere to include a new input vector in one region of space may
exclude vectors which were properly classified inside the hypersphere and include
inappropriate vectors inside the hypersphere. Such a scheme may prove unstable if the
hyperspheres are alternately shifted one way then another or expanded then shrunk or a
combination of both in order to accommodate input data in different regions. The RCE

o

@

)

€]

FINAL REPORT 67 Contract N0O0OO14-89-C-0257

classifier is generally more popular and is the basic unit of the Nestor Learning System
(NLS).

S. Analogy to Coulomb Energy

Consider the Electrostatic problem in which a test particle of positive charge is
placed in a space which includes some distribution of negative charges. Clearly, the
positive charge will be drawn along some path into one of the negative charges. All of
space can be classified according to which negative charge will be ihe eventual winner in
attracting the test charge. The problem can be extended to more than 3 dimensions with a
generalized Coulomb potential energy function

E=-2i q/ k-l

The pi are the positions of the negative charges, and correspond to the prototypes; the qj
are the magnitudes of the charges and they determine the extent of the spatial region from
which a positive test charge will be drawn to charge i.

If the problem is simplified by replacing the Coulomb potential with a square well
potential, i.e.,

Ei=0 Ix - pil <0
=-Gi/Rp Ix-u;l>9

then we have what is unfortunately called a Restricted Coulomb Energy.

It is even more unfortunate that the hypersphere classifier is referred to as an RCE
when only the creation and shrinking of hyperspheres is allowed. It seems that the nanw
“Restricted Hypersphere Classifier” is more appropriate, leaving out the loose analogy to
Coulomb Energy and Electrostatics.

6. Nestor NLS

The predominant use of the RCE network seems to be in the Nestor Learning
Systems (NLS). The more sophisticated NLS combines a number of RCE networks in
modular form. The method of their combination and details of the system are
proprietary. Applications of NLS include signal classification (target recognition of sonar
pings, heartbeat classification, and aircraft radar signature recognition), Image Processing
(real-time 3-D object classification, industrial parts inspection, and signature
verification), Character recognition (handwriting recognition and Japanese character
recognition), speech recognition, and financial applications (automated mortgange
insurance underwriting, mortgage delinquacy predection, automated securities trading,
and bond trading).

FINAL REPORT 68 Contract N0OOO14-89-C-0257

7. Advantages and Disadvantages

7.1. Advantages

(1) The RCE network should learn very quickly since it uses only three layers,
makes nodes only as it needs them, updates the weights in one step (shrinks the
hypersphere immediately to exclude the inappropriate point) and has no weights to
upgrade from the second to the third (output) layer. Also, not all the weights need to be
updated when an input is introduced; only those which corrresp-.nd to an incorrectly
activated prototype are altered. Furthermore, the updating of the weights to a single

prototype is the same since only the multiplicative factor kj is reduced, i.e., Aj= ljpj -—-->
S =i
1R

(2) It is easy to map out the prototypes and their respective hyperspheres since
each second layer node corresponds to one prototype and the weights connected to it from
the first layer are related to the radii of the hyperspheres. Therefore, it is easy to visualize
the separation of space by the hyperspheres of each class.

7.2. Disadvantages

(1) Typically, large numbers of prototypes are needed. Since each prototype
coincides with some particular input vector, and cannot move, it is not placed optimally.
For example, if the data inputs of one class fall in a simple sphere and the first input
presented is off-center, then the first prototype will coincide with this input and it cannot
include the whole sphere in its region of influence without including points outside the
sphere. Since this prototype cannot move, more prototypes with smaller radii of
influence will have to be added to include the regions left uncovered by the first
prototype. Still, the entire sphere is not ccvered. This particular problem can be solved
exactly with one prototype if it is moved to the center of the sphere and the hypershpere
is expanded or shrunk until its radius is equal to that of the sphere.

(2) More input data may be needed 1o cover all of space with hyperspheres and
remove ambiguous regions than typically required by back-propagation.

(3) Complicated boundaries between regions of different classes are not handled
well by the RCE. A back-propagation network, gives a probabilistic value that a given
point belongs to a particular class. As one approaches the boundary between two classes,
the probabilities of the two classes may draw closer to each other reflecting the relative
uncertainty of the network but also allowing a complicated boundary to be drawn by the
network. The output of the RCE is digital; the boundary line is sharp. If it is incorrect, it
can only be adjusted by including more input vectors, and new prototypes. Alternatively,
the RCE network can be revised to include a probabilistic rather than a digital output in
order to handle complex boundaries. Some of the modules in NLS may be RCE
networks with probabilistic outputs.

~r - W "

[' F o — o] Ay <ty

FINAL REPORT 69 Contract NO0014-89-C-0257

(4) The RCE classifier may "overlearn” a fuzzy boundary. In other words, if there
is some uncertainty or error in the input position, inputs of one class may be situated in
the region of another. The RCE network will proceed to make isolated small
hyperspheres around these inputs inside incorrect regions and shrink the correct class
hyperspheres until they exclude these erroneous points. This problem can be diminished
through "pruning”, where hyperspheres which include just one (or very few) points are
eliminated.

decay radial basis matric comection PRCE RCE+PRCE Corrected Corrected
length function method PRCE RCE+PRCE
0.1 Gaussian Eucidlean 1 8.2% 8.1% 1.4% 8.0%
0.5"RCE Gaussian Eudidean 1 7.4% 8.2% 8.5% 8.3%
radius

0.5°RCE Gaussian Eucidean 2 7.4% 8.2% 7.9% 8.3%
radius

01 Gaussian Crty Block 1 7.8% 8.5% 7.2% 8.2%

a1 E xporential City Block 1 7.4% 81% 7.0% 8.1%

Table 1: RCE and PRCE performances on 2-dimensional separated Gaussians. Note that a) with
variable deay lengths, the corrected weighs enhance the results, while with fixed lengths, the reverse
is true, b) generally, RCE+PRCE is worse or no better than PRCE alnoe with or without weight
corrections, and within the statistical error of 0.5%, and c) backpropagation is better at 6.7%.

decay radial bassis metric cofrection PRCE RCE+PRCE corrected corrected
length tunction method PRCE RCE+PRCE
0.2 Gaussian Ciy Block 1 5.3% 5.0% 54% 5.1%
0.1*RCE Gaussian City Block 1 7.0% 7.0% 6.8% 6.8%
radius

0.05 * RCE Exponential City Block 1 8.3% 7.9% 6.8% 6.7%

radius

05 Exponential City Block 1 4.9% 4.8% 53% 5.0%

05 Gaussian Euciidean 1 1.7% 1.9% 1.9% 2.0%

02 Exponential Euclidean 1 2.2% 2.3% 1.8% 2.1%

Table 2: RCE and PRCE performances on the 5-character recognition problem. Note that a) the
Euclidean metric performs better than the city block metric, b) fixed decay lengths perform better
than variable decay lengths with radial basis functions, and c) Differences in performance between
PRCE, RCE+PRCE with and without corrected weights are within the statistical error of 0.5%.

FINAL REPORT - 84 Contract NOOO14-89-C-0257

FINAL REPORT 70 Contract NO0014-89-C-0257
8. References

1. Reilly, D.L., Cooper, L.N., Elbaum, C., "A Neural Model for Category Leaming",
Biological Cybernetics, v. 45, 1982, pgs. 35-41.

2. Scofield, C.L., Reilly, D.L., Elbaum, C., Cooper, L.N., Pattern Class Degeneracy in an
Unrestricted Storage Density Memory, Nestor.

3. Reilly, et al.,, Learning System Architectures Composed of Multipl ming Modules

4. Lee, Y., Classifiers: Adaptive Modules in Pattern Recognition Systems, Masters
Thesis, MIT.

5. Collins, E., Ghosh, S., Scofield, C., "Risk Analysis", DARPA Neural Network Study,
AFCEA Intern. Press, Appendix G, pgs.429-443.

0]

FINAL REPORT 71 Contract N00014-89-C-0257

Radial Basis Approximations
Gregg Wilensky

1. Introduction

Given a set of prototypes, one can approximate the probability density function
for class ¢ as sum of radial basis functions g,(f-r,) around each prototype p. The

subscript p on the radial basis function indicates that the function may be different for
each prototype. For example, the functions may be Gaussians with different standard
deviations for each prototype. The problem at hand is to find the best set of coefficients

w, to weight each of the basis functions in order to best approximate the class

probability density p(Flc):

P =Y w, 8, (F-F,).
.

I will show two approaches. But first we must recognize that the probability density is
normalized to unity:

[(@) pE =1,
which implies
Sw, =1,
S
since the radial basis functions are assumed to be normalized:
J(@)eE-7)=1.

The first method of approximating the coefficients involves recognition of another
approximation, the Parzen's windows approximation, in which the probability density for
class c is approximated by a sum over all the data points of radial basis functions around
each data point:

pFle)=) p* g(F -),

where the coefficients are defined by

m ore—
®
FINAL REPORT 72 Contract NO0014-89-C-0257
P = p? 5@ = L a notof classc
Y S ¢ |0 aisofclassc .
In order to estimate the coefficients for the prototype expansion we will minimize the
integrated squared difference of the probability densities when estimated by these two
approaches:
»
2
€= I(dF)E[Z Wep8p (r- Fp‘)= Zpia) g(r - Fm)] .
¢ P a
The derivative of this error with respect to each weight will be zero when the error is ’
minimized. This derivative can be written as:
o€
= 2 M w_~-v_,
aW;, o PP P 4
where ®
M, =M,, = [(dF)s,(F-F,g, (F-F,)
and
]
v, = 2, p°[(dF)g, (F - F,)g(F - F).
One can either solve for the weights by inverting the matrix:
_ -1 ’
w, = 2 M_v,,
p
or gradient descent can be used to iteratively approach the solution:
J€ »
ow,, o< — = —ZM” W, + V.

<P 14

In the special case in which the radial basis functions are Gaussian and the metric is
Euclidean:

FINAL REPORT 73 Contract N0O0O014-89-C-0257
g.(r—r,)= exp
P P (2 ’ra_:)N/Z
8,(r—r,)= S - exp
14 14 (2”0:)N12

. 1 —(Fp -r .)2
My =8, (F,—T,)=)W/Z €xp ’

(2n(of+a§.)

(a) —(F(“) - Fr)2
Ve ™ (2m(c? + a’))m 2 plexp

20 +0%)|
P

If all prototypes have the same standard deviation then the diagonal elements of M are all
constant and the off-diagonal elements are smaller than the diagonal elements. One can

approximate the inverse of a matrix (1+A) 1= 1- A + AZ .. Keeping only the first two
terms in the expansion gives the estimate for the weights:

()

r. -r"")

2

o] £

P p 40

w, :2p“’cxp[-(r _r“)) } Y exp

If instead of using Gaussian radial basis functions with a Euclidean metric we use
exponential basis functions with a city block metric,

|f-i'|=2|i-FL,
i

g,(r-r)= Ezﬁexp[—xpli" - FP.I],

then the matrix has a more complicated form:

M, =]1M

FINAL REPORT 74 Contract NO0O0O14-89-C-0257 ’
where
. . - - []
M = % K’:i"’:z. {xp exp[—xp.lr’ - r,,.L] -K, exp[—x'plrp - rP.L]}.
P 4
For the case in which Kp = Xp'» this reduces to:
M,, = exp[-xfF, - 7,] 1‘[(1 + o, ~F,|)
[]
»

—7

FINAL REPORT 75 Contract N00014-89-C-0257

Lynch-Granger Model of Olfactory
Cortex

1. Introduction

Richard Granger and Gary Lynch at the University of California, Irvine have
developed several unsupervised neural network models. Their approach is to model as
faithfully as possible a biological network (the olfactory system) and to extract the
essential features of the model. Higher and higher level models, which simplify the
details while capturing the function of the biological models, are then constructed. This
approach has led them to models of learning and memory in the olfactory system. These
are hierarchical clustering models which group a set of input vectors (representing
various odors, for example) into clusters of similar cues.

Though the model could be applied to unsupervised clustering with any types of
inputs, I will use the example of smell to illustrate it. An odor is input to the primary
olfactory sensors, which input to the lateral olfactory bulb. The bulb may normalize the
inputs and send them to the olfactory cortex. The pattern of activity in cortex encodes
information about the odor. The patterns resulting from the response to the first sniff of
an odor will be similar for similar odors (Note that rats sniff at a rate of about 5§ Hz). For
example, all sweet smelling odors may give the same (or very similar) first sniff response
in the cortex. The second sniff to an odor classifies the odor at a different hierarchical
level. For example, the first sniff response to flowers and fruit may be the same because
they are both sweet odors. A second sniff may give the same response to any type of
flowery smell (roses or lilies, for example) but will give a different response to a fruity
smell. The third sniff may discriminate between various types of flowers or varicus typcs
of fruits.

In the simplest algorithmic form of the model (discussed in the preprint
"Simulation of paleocortex performs hierarchical clustering”, to be published in Science),
the hierarchical clustering is achieved by combining a winner-takes-all network with

feedback to modify the input signal (smell). A weighted sum of inputs from the bulb (15t
layer) feeds into the cortical nodes (2nd layer). This weighted sum is a vector inner
product ----- w1ex between the input vector x and the weight vector w| associated
with node number 1. There is a separate weight vector for each node in the 21d layer.

The node with the largest inner product (the largest overlap with the input vector) is
selected to win the competition. This winning set of weights is then trained so that it
moves in the direction of the input vector: w --> w +y(x - w). When trained on many
odors, similar odors will light up the same node and the above training law will result in
w approximating the mean of the associated input vectors. The next step, after a node
wins and its weight vector is modified is to present a modified input vector to a second
network (representing the second level in a hierarchical tree). The input vector is
modified by subtracting from it the winning weight vector: x -->x - w. This is

FINAL REPORT 76 Conrtract NO0014-89-C-0257

equivalent to translating the origin in the input vector space to the mean of the cluster (the
winning weight vector). The above procedure is repeated for this second network, whose
winning weight vectors will learn the mean of the subclusters. This process is repeated
for all the networks. The result is that successive networks leamn to cluster the inputs with
finer grades of distinction.

The above model is not perfect. Similar subclusters can interfere with each other;
subcluster weight w2 (which should represent the mean of points in subcluster 1 within

main cluster 1) may learn the mean of points clustered about both main cluster 1 and
main cluster 2. This is overcome in the more complete olfactory model which
incorporates collateral connections within the cortex. In other words, there is feed-
forward excitation (or the equivalent effect from initiation of a refractory period in the
inhibitory connections) which selectively excites neurons associated with the winning
node. In this way, the neurons which learn a subcluster in cluster 1 will be different from
the neurons which learn a subcluster in cluster 2. A second effect of the feed-forward
connections (the effect emphasized in the preprint "Asymmetry in cortical networks
enhances hierarchical clustering") is the sharpening up of the clustering. It tends to
make the response to similar cues more similar and the response to different cues more
different.

The more detailed and biologically faithful model includes both the olfactory bulb
and the olfactory cortex. Feedback from the olfactory cortex to the bulb is responsible for
modifying the inputs after each sniff so that the replacement x --> x - w is mimicked.
Feed-forward collateral connections within the cortex both sharpen up the classification
and remove possible confusion among subclasses, as mentioned above. The connections
from the bulb to the cortex (along the lateral olfactory tract, LOT) feed the normalized
olfactory signals emerging from the bulb to the cortex. These connections are random
and sparse. This sparseness allows subsequent sniffs to sample different parts of the
input which allow finer levels of distinction. The Hebb-like learning rule, based on long-
term potentiation (L.TP), only allows synaptic strengths (weights) to increase.

Within both the bulb and the cortex are patches of neurons with local inhibitory
connections that can effect a winner-takes-all response. Modification of the number of
winners in each patch results in different types of clustering analyses (more on this in the
more complete report).

B B)

-

—

FINAL REPORT 77 Contract NOOO14-89-C-0257

Winner Takes All

O O ’ O O O O Olfactory Cortex

Sparse, Random Connections

O @® O | osctory suw

r Olfactory Inputs

Fig. 1: Hierarchical clustering model of Lynch and Granger

Level 1 Level 2

3 ' l

Choose Largest wex

Choose Largest wex

K v

W > W+ (X-W) W->W+Y(x- W)

I '

X->X-W

X->X-W

Fig. 2: Simplified hierarchical clustering model of Ingerson, Granger and Lynch

P-m

FINAL REPORT /8 Contract NOOO14-89-C-0257

Olfactory Cortex

Sweet @ Flowery O Jasmine O Al;:o
exhaust
?m So. Futy O Rose O Cigarette
weet
Spicy @ Lily O smoke O
wiiner-takes-all patches

Smoky O Orange O
Rancid O Cherry - O
Grape O

Feedforward connections to enhance clustering
Nu[meg . Feedback 1o Selectively
Inhibit Portons of Input

Cury QO
Lateral Olfactory Tract Basil O

Input from Bulb

EoXeXel X X YoIeX X XeJXoX)

ffHH“H?

Primary Olfactory Inputs

GO0 gl
trtt

Fig. 3: Iilustration of olfactory model.

- FINAL REPORT 79 Contract N0O0014-89-C-0257
®
T
N Level] Level 2 Level 3 Level 4
C fg C _‘] ‘ [f_]
wl W2 W“, wlz‘ le w12]' wu.z wzm' Wm2
Wop Wy, Wy Wasrs Waay Wass

. I
X-W -W_ J—.{ x-w.-w_h-w_h —I

Network Structure

Fig. 4: Hierarchical layers of prototypes

-

-

FINAL REPORT 81 Contract NO0014-89-C-0257

Multi-parameter Process Control with
Neural Networks

Narbik Manukian, Joseph Neuhaus, Gregg Wilensky!®

November 1992

Abstract

Neural networks (NN's) are used to predict characteristics of GaAlAs layers grown by organometallic
chemical vapor deposition (OMCVD). Because of the scarcity of training data available for this high
dimensional problem, a procedure, the successive approximation method, was developed which enables the
most relevant input paramelers to be selected first by a linear NN and then used by u more general NN. In
addition, by training to predict the correction lo physical formulae for the layer characteristics, maximum
use is made of prior knowledge about the problem. Indeed, this procedure results in a significant
improvement in predictive capability beyond the simple physical formulae.

1. Introduction

The control of a set of process parameters by many input parameters is a problem
of interest in many real industrial applications. The manufacture of products often
involves a process controlled by several parameters, where the product must meet quality
requirements or performance specifications. Sometimes a basic physical formula is used
to partially or approximately describe the output as a function of the inputs and then
predict the appropriate input values for a desired output. However, the actual output
deviates from the simple theoretical prediction, and a more refined or accurate description
is required. This study focuses on the application of neural networks to control the
growth of GaAlAs solar cells2? by OMCVD. The growth process is controlled by the
setting of approximately 30 parameters, and the outputs investigated in this study are the
thicknesses and dopant concentrations of specific layers of the solar cell. As a first
approximation, the thickness and dopant concentration can be expressed in terms of
several inputs analytically as will be discussed later. However, these predictions are not
sufficiently accurate, and a more precise mapping of the inputs to the outputs is desired.
In this study, the neural network model is used to improve the analytic approximation in
determining the thicknesses and dopant concentrations of solar cell layers. However, the
general techniques developed here are also applicable if no analytic or empirical formulae
exist. Any technique that attempts to map the inputs to the outputs in such process
control problems must address the characteristic problems that occur in real
manufacturing operations.

19This research was sponsored by DARPA/ONR contract N00014-89C-0257.
20 The data for this study was obtained from Kopin Corporation.

o]

FINAL REPORT 82 Contract NOOO14-89-C-0257

First, the parameters must be properly scaled, since they are in different units with
different ranges of variation. In the solar cell growth process, the parameters consist of
various pressures, temperatures, flows, etc., some of which have little or no variation (0 -
5%), others have a limited set of discrete values (2 or 3), and some have large variations,
where the largest value of the parameter is several times the smallest value, and still
others such as the dopant concentrations vary by several orders of magnitude. Several
normalizations of the parameters are possible, but care must be taken so that the
normalization does not obscure or unduly emphasize a parameter or its variation. A small
value or variation in an input may cause that particular input to be ignored, while a very
large value or variation in an input may saturate a neuron on the next layer. One
advantage of a neural network is that it can readily mix parameters in dif erent units
successfully, since the weights can also serve as unit conversions.

With sparse data, any . -hnique that attempts to correlate outputs to a large set of
inputs or approximates rutputs as functions of the inputs must guard against 1)
correlations among inputs :nd 2) random correlations between inputs and outputs.
Correlations among inputs can result from physical relationships among the inputs and
mzke a unique solution impossible. For example, in a dilute gas, the temperature,
pressure and volume of a gas are related, and since any one of the related parameters can
be considered as dependent on the other two, there car be no unique solution for the
relationship of these inputs to the outputs. Thus, any particular solution may over- or
under-estimate the importance of a dependent parameter. Correlation between inputs or
outputs can also result from a decision of the experimenter to run the process only in
desirable regimes of the output space. For example, in the solar cell growth experiments,
thickness and dopant concentration are intentionally correlated as shown in Fig. 1, so that
thin layers tend to be n-doped and thick layers tend to be undoped. Without prior
knowledge that these correlations are imposed by the experimenter, any technique,
including a network, will assume that the correlations are real.

6 1

10
3 3
=1 5 d
s

10
- x E
5 A% A]
£ 10’ :‘ " x .
£ »
2 -! x . - x x E
£ 3 L 1 % n-type dopant
£ 10 z A f 4 undoped
£ x A 3
- 3 ry 30 [
& 10§ x - 1
g Al d
o a [
E 10l L] ‘ 4 4
§] ™Y]
s 2 s

10 ——r—r—r T r——r—r—rrrrY

1 10 100

thickness (arbitrary units)
Figure 1. Experimenter-induced correlation between thickness and dopant concentration?,

21 Note: Units have not been provided for the data in this report in order io protect the confidentiality of
Kopin Corporation’s data.

»

FINAL REPORT 83 Contract N00014-89-C-0257

Random correlations between inputs and outputs are the most prevalent problem
that can occur with a small training sample and a large input dimension. As an example,
consider a set of irrelevant input parameters which are known to have no effect on a
particular output parameter. There is always some finite probability that the changes in
the output parameter will be correlated to the random changes of one of these inputs or a
combination of these inputs, simply because some of the small fluctuations of these
parameters just happen to match the changes in the output. Then, given a sufficient
number of input parameters and a sufficiently sparse data set, such random correlations
are likely to occur.

In the solar cell growth experiment, the problem with random input-output
correlations prevented a straightforward application of a back-propagation network using
all the input parameters as input nodes. A typical back-propagation network with a
particular random initial setting of weights would key in on some mixture of significant
and insignificant parameters while another network starting from a different random
initialization of the weights would key in on a different mixture of input parameters.
There is no a-priori way of ensuring a unique and physically meaningful result from any
particular run of a simple back-propagation network. Furthermore, there is not enough
data to train a network with such a large input dimension and determine the proper output
without overtraining.

Principal component analyses are also ineffective here, since these analyses
emphasize the role of the input parameters which lead to the greatest output variation,
rather than those input parameters which are most effective in predicting the output. The
result is that the first few principal components contain many of the irrelevant or
unimportant parameters mixed with the important parameters in some combination, rather
than just the linear combination of important parameters.

The following sections describe an approach to overcome these problems through
the successive neural net approximation. The method is then applied to the solar cell
growth problem with positive results.

2. The Neural Network Model

2.1. The Leave-One-Out Training Method

Neural networks generally require large amounts of training data to generalize
well on difficult problems. Since the Kopin solar cell data is sparse (on the order of 100
points) we need to guard against the possibility of over-fitting the training data. This is
done by partitioning the data into two sets; one is used for training the NN, and a distinct
set is used o test the generalization performance. One must trade off the amount of data
preserved for training against the remaining available for testing. In order to maximize
the amount of training data, we have implemented the leave-one-out method in which
only one data point is preserved for testing. The single data point is extracted from the
training set and used to test the performance of a network which has been trained on all

FINAL REPORT 84 Contract N0O0014-89-C-0257

remaining points. This procedure is repeated until all points in the data set have been
tested. If there are N points in the data set then we require N networks, each one is
trained on N-1 points and produces test results for a single point. It is important to make
sure that each network is trained starting from randomly initialized weights. This
technique is computationally intensive but minimizes statistical error in the results and
provides a means of quantifying the generalization performance.

2.2. Neural Network Outputs: Successive Approximations Using Back
Propagation

To solve the problem of process control with neural networks where the outputs
are controlled by a large number of input parameters and the training data set is limited,
we need to develop a technique which reduces or eliminates the effects of random
correlations and can be used to improve upon an existing analytic or empirical
approximation. Our approach is to calculate successively finer approximations of the
output by iterating through smaller networks with more manageable input sets. Two
back-propagation networks are used in each iteration as illustrated in Fig. 2.

First iteration output = measured / formuls

NN1 NN2

| Lkt

Inputs with largest weights selected

Second iteration output
= measured / [((NN2 output from 1st iteration) * formula)

Third iteration output
= Mmeasured / [(NN2 output from 2nd iteration) *
(NN2 output from 2nd iteration) * formuta)

Figure 2. Successive approximation technique: Repeated iterations with two neural networks.

The first network (NN1) is designed to reduce the input set by selecting the
parameters in order from greatest to least correlated to the output. NN1 performs only a
linear correlation so that it determines separately for each parameter how strongly it is
correlated to the output. Using the leave-one-out method, a separate NN1 is trained on
each training set leaving out a different data point. For each NN1, the absolute value of
the weights to each input parameter determines the relative importance of that parameter.
These absolute values of the weights to each input parameter
are then averaged over all training sessions, and these averages determine which
parameters have the greatest impact on the input-to-output mapping. By averaging the
absolute values of the weights over all NN1s, the problem with undesirable correlations is
reduced: If there are dependent parameters, then different networks will favor one
dependent parameter over another but the average weights of these parameters will have a
more uniform emphasis. Averaging over all NN1s also reduces the effect of more

-0

a W

FINAL REPORT 85 Contract NO0014-89-C-0257

complicated random correlations between inputs and outputs, since these correlations are
unlikely to recur in every network. Simple correlations, e.g. between a single parameter
and the output, are less likely to occur and they may not be removable through any
technique without additional data points. Some variables which may be selected as
significant by NN1 can be rejected based on physical arguments, and others because they
have little or no variation over the entire data set.

The second network (NN2) in each iteration trains on a reduced, and therefore
more manageable, set of input parameters obtained from NN1. It is not a linear
correlator, but a standard 3 layer back-propagation network which can approximate non-
linear output functions. The smaller number of input parameters greatly reduces the
probability of overlearning due to random correlations between inpuis and outputs. In a
more exhaustive study, the optimum number of input parameters could be determined
empirically by trying to solve the problem with only the parameter with the largest
average weight, and then repeatedly adding inputs in order of decreasing average weights,
until the network shows no improvement. However, in this study, we chose the first few
parameters with average weights distinctly larger than the rest of the parameters. If
through this selection, an important parameter is omitted, then it may be included in the
next iteration. If an unimportant parameter is included as a result of some random
correlations, then it will probably be ignored by NN2.

If there exists an a-priori analytic or empirical approximation (formula), then the

first iteration of the networks NN1 and NN2 are trained to output

Measured Value
Formula

Desired Output =

as shown in Fig. 2, rather than training directly on the measured value. If there are no
formulae, then the first iterations will be trained to output the measured value directly.
Training on this ratio allows the first iteration to learn corrections of the formula rather
than attempting to determine the functional dependence of the output on the inputs
directly. Then, each successive iteration is trained to output the measured value divided
by the approximation of the output in the previous iteration of

NN2 as shown in Fig. 2. Thus, each successive iteration of the network will minimize the
fractional error relative to the previous approximation. The iteration scheme stops when
NNI cannot separate any parameter as more significant, or when NN2 can no longer
improve on the last approximation.

In this study, we used existing analytical formulae that approximate the thickness
and dopant concentration shown below in Table 1. The variable names are capitalized.
Those beginning with the letter F are gas flows, those beginning with P are pressures and
those beginning with T are temperatures. In addition to these variables, t is the event
time, X is an additional process parameter, and RUN is the experiment number used as a
rough indication of time. A detailed description of the parameters is not provided in this
report in order to protect the confidentiality of Kopin Corporation's process.

aAri b e

-

FINAL REPORT 86 Contract N0O0014-89-C-0257
Quantity Analytical Formulae
n-Type Dopant (Fs)(Fs) /(R P p-eeremy 2 F2 -, 73 +773)
Concentration Fe+ Fnf \ P
Layer Thickness £ (F £ jedisam) 5 F2 £yt +m))
P 2

Table 1. Analytic formulae for the outputs used as a first approximation.

2.3. Neural Network Inputs: Normalizing Input Parameters

The Kopin data consists of measurements of various parameters during an event
of wafer layer growth. One or more events may contribute to the growth of a single layer
on the wafer. During an event, parameters are set to a constant value or ramped linearly
to achieve a desired effect. For each event, the average, minimum, maximum and
standard deviation of each parameter are recorded. For this study, we only used the
average values of the parameters over an event.

To address the problem of combining these parameters which have different
physical units and different ranges of variation, we employ the statistical characteristics
of the data to scale the inputs to the neural network. The manner in which data is
normalized and presented to the network, especially a back-propagation (BP) network,
greatly influences the network’s ability to find a robust solution. It is also preferable to
normalize the input parameters in a way that matches the dynamic range of the hidden
layer neuron activation. For each parameter x, we find the mean and standard deviation
over the entire data set of N events:

- 1¢
x=7v—j2=;xj (mean)

o= J N1 Z(x —~x)* (standard deviation)

j=1

Then, we scale each parameter with respect to its mean and standard deviation over the
data set before feeding it to the neural network:

X, = 2meswed "X (NN input).
(o]

FINAL REPORT 87 Contract N0O0014-89-C-0257

This normalization has the advantage that each parameter will vary in the same range
about zero, but its disadvantage is that small variations in parameters which only have
small variations will be magnified. In such cases, unphysical or irrelevant correlations
between such variations and the output must be avoided.

There are a total of 142 data points in the raw Kopin data file. Depending on the
type of prediction being made, a subset of these points is used for training and testing
purposes. For example, if the network is attempting to learn n-type doping then all
undoped type data points are excluded from the training set. Below is a table of the
number of points used for each case.

Type of Prediction # Points Used # Parameters Used
Layer Thickness 130 28
n-Type Dopant Conc. 67 31

Table 2. Summary of available Kopin Data.

3. Results

3.1. Layer Thickness predictions

As discussed before, the first set of networks (NN1) is designed to determine the
best linear fit of the inputs to the outputs. The average of the absolute value of the
weights from each input to the output (thickness) is shown in Fig. 3 for prediction of
single layer thickness. The input parameters Fi, F3, t, F2, F4, and X, an additional
process parameter, were chosen as the most significant parameters for the first
approximation, and fed as inputs to the second network. P} was omitted because its set
value was constant for the entire data set and its measured value varied by less than
0.16%. Note that all parameters, even the irrelevant parameters were considered
important by some networks, demonstrating the necessity of averaging over many
networks and only choosing a few parameters whose average weights are distinctly
higher than the rest of the parameters.

FINAL REPORT 88 Contract N00014-89-C-0257

[
e L
F3
1
4
R »
n
X
)]
2 b
3 <}
| 2]
E ™
P4
8 »
= p
]
o P5
- 3]
- F2
[<% P6
] »
omn p7
T
ol
F10 [
T
Fil
F12
F13
-~
0.0 05 10 15 20 25
»

average |weight|
Figure 3. Average weights from linear networks (NN1): correlation of inputs to layer thickness.

With these 6 parameters as inputs, NN2, was run with varying numbers of hidden
nodes in order to determine the optimum number of hidden nodes for generalization. The
resulting performance on the training and test sets with the leave-one-out method using »
1,3,5,10 and 20 hidden layer nodes shows that the test results are relatively insensitive to
the number of hidden nodes (see Fig. 4). We chose to run the network with 10 hidden
layer nodes since the results were slightly better with 10 nodes.

-4 [
; ——
i e ’
p
) 0 2 »
number of hidden nodes

Figure 4. NN2 generalization capability as a function of the number of hidden layer nodes in
predicting layer thickness.

| ®

FINAL REPORT 89 Contract N00014-89-C-0257

Finally, the second network, shown in Fig.5, was trained with these 6 parameters
as inputs, 10 hidden layer nodes, using the leave-one-out method to output the desired
thickness divided by the analytical approximation. The improvement of the network
output over the formula is shown in Fig. 6, where the error made by the network is
generally less than the error made by the formula. The run number indicated is a
reference number provided by Kopin for each experiment. The overall improvement by
the network in estimating the thickness is shown in Table 3: The average relative error
made by the network is 12.3% as compared to 27.5% made by the analytical formula
averaged over the entire data set. This corresponds to an average reduction of the relative
error by a factor of 2. The limited data set did not allow another neural network iteration
in the successive approximation scheme. The next iteration of the linear approximation
network (NN1) did not select any parameters as significant above the rest of the
parameters. A greater amount of data is needed to further improve the prediction.

output = desired thickness/formula prediction

Figure 5. Neural network (NN2) used for approximation of layer thicknesses.

15 N A A " o

sec®-~ formula
~—=— neural net

1.0

T

e@emecscesssiesTWEY

05

relative error
S3RERBREnsnag

Ry

Li%hseenny

Ty

e

wgpuoven
APy
H

0.0

05 —p v o — ¥
0 20 40 60 80 100 120 140

experiment number

Figure 6. Improvement over the analytic approximation by the neural network model in
predicting layer thickness.

SRR I

®
FINAL REPORT 90 Contract N00014-89-C-0257
Layer n-type Dopant
Thickness Concentration 'y
Analytic
Approximation 27.5% 46.9%
Neural Network
Approximation 12.3% 19.9%
®
Table 3. Relative Error of Formula vs. Network.
3.2. Dopant Concentration Prediction
o
For n-type dopants, the linear correlation of inputs to outputs analyzed by NN1
resulted in 3 parameters with average weights noticeably above the other parameters as
shown in Fig. 7. The run number, RUN, is incorporated here in order to account for
possible degradation of dopant concentrations over time.
»
F6
F11
K4 »
F3
[
P2
™
RUN
E t
E o ’
E &
8 m
& X
F12
2 n
=] P
o P .
gy
P35
F7
TS
T4
n
P?
»
F10 »
F13
{ ’ - v
0 1 2
average |weight|
Figure 7. Average weights from linear networks (NN1): correlation of inputs to n-type dopant
concentrations in the first iteration. »
’
® ° ° d ° ° ° e

v

FINAL REPORT 91 Contract NO0014-89-C-0257

After NN2 is trained on these parameters in the first iteration of the successive
approximation technique, a set of NN1 networks are then applied in the second iteration
of the successive approximation scheme. They are trained to output the desired dopant
divided by the thickness as determined by NN2 in the first approximation. This
procedure yielded 4 parameters with average weights somewhat greater than other
parameters as shown in Fig. 8. Of these 4 parameters, only F1 had a set value that varied
over the data set. The other 3 parameters were rejected. Since training the second
iteration of NN1 selected out just this single parameter as an important input, we chose to
add F to the first iteration of NN2 and retrain it on the data set rather than training the
second iteration of NN2 on a single parameter.

RUN

t parameters

inpu

ErEEEFEERE R LD

Ll v 1 v

0.0 0.2 04 0.6 0.8 1.0 1.2
average |weight|

Figure 8. Average weights from linear networks (NN1): Correlations of inputs to n-type dopant
concentrations in the second iteration.

Thus, NN2 was trained with four inputs, F1, F3, Fg, F11, with varying numbers of
hidden nodes as shown in Fig. 9, where each point represents the average performance of
independently trained NN2 networks. The training error is relatively independent of the
number of hidden layer neurons. We chose 3 nodes in the hidden layer and trained each
network to output the n-type dopant concentration divided by the analytic approximation
(see Fig. 10) using the leave-one-out method. The performance is shown in Fig. 11,
where the network once again improves on the analytic approximation. The average
improvement is again approximately a factor of 2: The relative error made by the

FINAL REPORT 92 Contract N00014-89-C-0257

network in the n-type dopant concentration is 19.9% as compared to 46.9% by the

formula as shown in Table 3. Also, the long time performance of a single NN2 network

was tested to make certain that the networks were stopped at an appropriate point in their »
training and that further training would add little improvement. As shown in Fig. 12, the

network was stopped at 40,000 trials and further training did not substantially enhance its

performance.

[
0 5 S SR U TS T W S S T A I U G S A ry A a
1 L
04 1 -
J |]
2
s 03 J
2
3 —
2 02
= »
4 !
0.1 B
1 |
0-0 L T L] ¥ ¥ L R] ¥ .
1 2 4 5 6 7 8 9 10
number of hidden nodes
Figure 9. Generalization capability as a function of the number of hidden nodes in predicting n-type
dopant concentrations.
output = desired dopant/formula prediction »
3 hidden layer nodes ’
4 inputs
Fy F3 Fe Fi
]
Figure 10. Neural network used for approximation of n-type dopant concentrations.
»
®] ® L J e ° | J ®

Contract NOOO14-89-C-0257

93

FINAL REPORT

P U Y W W S S W G N S W v

VU T VN U W U N U |

A

70

se«®=-- formula
=== pneunal net

60

50

40

10

1.5

20113 ApwII

N\

Experiment number

Figure 11. Improvement over the analytic approximation by the neural network model in predicting

n-type dopant concentrations.

0.22

0.20

0.184
0.16

10113 AN

0.14

training epochs

Figure 12. Performance of NN2 after longer training on n-type dopant concentrations.

FINAL REPORT 94 Contract NOO014-89-C-0257

4. Conclusions

We have developed a neural network model and a successive approximation
technique for industrial process control in order to predict the desired outputs of a process
as a function of the inputs. Specifically, we have applied it to the growth of layers in a
solar cell where the number of input parameters which can potentially control the process
is large, such that the data points cannot sufficiently describe the dependence of the
output on the inputs. We have also addressed the problem of random correlations
between inputs and outputs and designed our model to avoid such correlations whenever
possible. We used two neural networks: The first network selected important parameters
through a linear correlation and the second network used this reduced -et of inputs to
estimate the output. Further, the model is designed to improve upon an existing empirical
or analytical formula, and we have demonstrated the improvement over the formulae in
approximating both the thicknesses and the dopant concentrations of the solar cell layers
by at least a factor of 2. Finally, the model is designed to successively iterate through
both networks and obtain progressively finer approximations of the output.

5. Acknowledgments

We would like to thank Matthew Zavracky and Ronald Gale of Kopin
Corporation for providing the data for this study and for their assistance in understanding
and interpreting it. We are also grateful to Natalie Rivetti for her assistance in editing
and compiling this report.

r——-——>

FINAL REPORT 95 Contract NO0014-89-C-0257

Detection of Ocean Wakes in Synthetic
- Aperture Radar Images with Neural
Networks:=

Gregg Wilensky, Narbik Manukian, Joe Neuhaus, John Kirkwood
Logicon/RDA

Abstract

Two neural networks are combined to detect wakes in Synthetic Aperture Radar (SAR) images of the
ocean: The first network detects local wake features in smaller subportions of the image, and the second
network integrates the information from the first network to determine the presence or absence of a wake in
the entire image. The networks train directly using the gradient descent method on either real SAR images
or on synthetic images and are designed 1o detect wakes in images with low signal-to-noise ratios. When
trained on real images, the network detector recognizes the wake in any translation and is robust with
respect to rotations. With synthetic images, the network model is able to recognize wakes with all possible
translations, rotations and over a wide range of opening angles. The performance of the neural network is
measured as a function of the signal-to-noise ratio in synthetic images and as a function of a parameter
related 1o the sighal-to-noise ratio in real images. The network outperforms the human eye in detecting
wakes in both real and synthetic images.

1. Introduction

Detection of low signal-to-noise synthetic aperture radar (SAR) images of wakes
on the ocean surface is a difficult problem, and existing template matching techniques
suffer from large computational expense and the difficulty of developing realistic
templates. Neural networks have been very successful in solving pattern recognition and
classification problems particularly when the rules for classification are either unknown
or difficult to specify. In image recognition, neural networks have proven to be robust
with respect to the degradation of the signal-to-noise ratio and distortions of the image
such as translations, scaling, and rotations. In this paper we demonstrate the construction
and performance of a neural network designed to detect ship wakes in low signal-to-noise
SAR images of the ocean surface. We train and test the network model on both real SAR
images and synthetic images generated to provide a larger statistical sampling as well as
greater control over the signal-to-noise ratio.

22This research was supported by Logicon RDA intemnal research and development funding (9001-0004),
and the extensions to compare with human visual capabilities were sponsored by DARPA/ONR contract

NO00014-89C-0257. This paper also appears in Government Microcircuit Applicajions Digest of Papers,
vol. 18, Nov. 1992.

FINAL REPORT 96 Contract N00O14-89-C-0257

2. The Images J

2.1. Real SAR images and the addition of nvise

The real SAR images are produced from a single digital image of a wake obtained »
from experiments at Loch Linnhe, Scotland. From this single image, we construct
smaller 512 x 512 sections of the image such that about half the images contain the wake
and the other half contain only noise. An example of a wake containing section is shown
in Fig. la. The starting pixels of the sections are chosen randomly so that the wake
images may contain the wake in any position (translation) within the image.

a
Figure 1. a) Example of a wake image without added noise obtained from original image
b) Example of a wake image with added noise at a noise level of 3.0.

The distribution of pixel intensities in one-look SAR images in the pure noise and
the wake regions of the image is approximately exponential:

pn (1) = (1/In) exp (-I/Ip) : noise
(1)
ps (ID= (1/1si) exp (-Vlsi) : wake (signal)

With such distributions, it is difficult to add noise and reduce the signal-to-noise ratio »
without disturbing the exponential form of either distribution. But, it is possible to add

noise to the entire image and preserve the exponential distribution of the noise sections

which comprise the majority of the image. Since the wake distribution is close to that of

the noise, its exponential character will be altered only slightly.

To do so, let the distribution of the additional noise Al be

p(AD =(In/In) XAD + (1-In/In’) (1/1n) exp(-Al/1n),

where I is the average pixel intensity in the noise region of the image and &(AI) is the
Dirac delta function. Then the final distribution will preserve the exponential form, since »
at Al # 0, the first term is zero and only the exponential term survives, and when Al = 0,
no noise is added. However, the additional noise is always greater than or equal to zero,

! o x

FINAL REPORT 97 Contract N00014-89-C-0257

and thus the overall average intensity of the noise pixels is increased so that <I'> is
greater than <I>. By adding to each pixel the difference between the initial and final
average pixel intensities, (In - In’), the average intensity of the pixels will be preserved,
ie.

<I'>=<I>+ (In-In')=Ih=<I>.
The "noise level” is defined by the ratio
r=In"/1In

and its relationship to the signal-to-noise ratio is shown in the Appendix. An example of
an image containing a wake with added noise of noise level of 3.0 which is near or
beyond human detection capabilities is shown in Fig. 1b.

2.2. Synthetic wakes and the signal-to-noise ratio

The synthetic images allow us to train and test the network on a statistically
significant number of images with a controlled signal-to-noise ratio and all possible
translations, rotations and opening angles of the wake. The synthetic images are 256x256
pixel images where each pixel intensity in a noise or wake region is generated from the
exponential noise and signal distributions found in real images so that the resulting
distribution of pixel intensities is similar to that of real images (1). A smaller image size
of 256x256 is chosen in order to speed up the training time, and each wake image is
constructed with random variations in the position, and orientation of the wake and with
opening angles varying randomly from 7 to 28 degrees. With a known distribution of
intensities for both signal and noise pixels, the signal-to-noise ratio can be determined in
terms of the ratio of average signal to average noise pixel intensities Isi/In as derived in
the Appendix. Therefore, by choosing an average noise pixel intensity Ip for all images,
any desired signal-to-noise ratio can be produced by an appropriate choice of the ocal
wake pixel intensity Igj.

3. The Model

A single back-propagation neural network wake detection model with the entire
SAR image as its input vector is time consuming to train and does not have built-in
translational or rotational invariance. Instead, we have constructed a two-neural network
wake detector as illustrated in Figure 2. Both networks are 3 layer (1 hidden layer) back-
propagation networks trained with gradient descent. The first neural network (nnl)
processes smaller 32 x 32 pixel "templates” of the image and detects the presence of
some portion of a wake arm within the template. Its outputs are the probability that some
part of the wake arm is present within the template and the most probable angle of the
wake with respect to the horizontal. Since the templates can be chosen from any part of
the image, nnl is capable of translationally invariant detection of local features.
Dividing the entire image into templates and operating nnl on each template effectively
transforms the entire image into a "reduced template image", where all the pixel values

4

l..‘

&

x,
]
FINAL REPORT 98 Contract N00014-89-C-0257 *
within a template are replaced by the outputs of the first network. The second neural .
network (nn2) takes the reduced template image output by nnl as input and determines B,
whether or not a wake is present in the entire image. It integrates the information from [
nnl, i.e. the presence of the wake and its orientation within each template is correlated
with that of other templates. *
Output: Probability of
presence of wake
Network 2: »
detection of wake
in entire image.
Enhancement
"ty 16X16
of reduced . :
emplato image TEMPLATES
. 5 OUTPUTS PER]
Network 1: TEMPLATE
orientation &
detection
12 HIDDE /' Input:
NODES 512 X 512 SAR
image
{ : ®
32 X 32 PIXELS PER 16X 16
TEMPLATE TEMPLATES
Figure 2: Two neural network model operating on a SAR image
» o
3.1. The first neural network
As illustrated in Fig. 2, nn1 is trained to detect local wake features (a portion of a
wake arm) in a template. The intensity of each pixel is fed directly as input into the first ’

layer of nnl. Since local features of the wake consist mainly of a band or bands of pixels
with intensities which are either higher or lower than the background noise, nnl must be
trained to recognize a light or dark band of pixels with an appropriate distribution of pixel
intensities in many positions and orientations within the template. The weights to the
intermediate layer nodes can be initially set to be sensitive to such bands at various angles
and positions within the template. This initialization saves much computation time, »
otherwise, with a random initial setting of the weights, the training time of nnl will be

unreasonably long.

When training on real images, nnl has one intermediate layer of 12 nodes whose
weights are initially set to detect bands which are 8 pixels wide, oriented in 4 different
directions, 0, n/4, /2, and 3n/4 and in three different positions for each orientation, as
shown in Fig. 3. After initialization, the weights and thresholds of all the nodes are
allowed to vary during training in order to reach a minimum of the error in the outputs.
However, the essential band structure of the intermediate layer weights for both the
synthetic and real image problems is not lost, although there are some changes which
include the curving of the bands, the creation of double banded templates, and the »
appearance of considerable heterogeneity in the pixel intensity across the templates. The
picture of some of the weights after training on synthetic images is shown in Fig. 4 and

r

&

Q

FINAL REPORT 9 Contract NO0O14-89-C-0257

illustrates that the band character of the weight templates is maintained through the
training process.

weights
12 Hidden layer nodes
mﬁnl i or dark
O in verious
positions and
iahts orientations

O 00 m"’“"_..._::;.'?.‘..m

Figure 3. Feature detection neural network (nnl).

hidden node 1 2 3

Figure 4. Weights to some hidden layer nodes after training.

As illustrated in Fig. 2 and 3, nn1 processes each template as a separate input and
reduces it to 5 outputs per template. The first output corresponds to the probability that
the template includes the wake as determined by nnl. If the template includes any
portion of the wake, the desired output of the first output node (n=1) is 1.0, and if the
template includes only pure noise, it is 0.0. The next four outputs, n=2-5, are designed to
give the direction of the wake in the template. For each template, the angle of the wake,
with respect to the horizontal within the template, 6, is determined, where 0< 6 <r. The
maximum values of the 4 angular outputs are equal to 1.0 and occur when 6 = 8y, where
On is 0, n/4, n/2, and 3n/4, for n =2, 3, 4, and 5, respectively. Given 6, the desired output
pn for each angular node is

pn=(1-16-081/d0) if 16-05/<do,
pn=0 otherwise,

where d0 is the angle between successive node maxima, i.e. /4. Note that when 6 is
between Op and Op+1, the desired values pp and pn+1 of the angular output nodes n and
n+1 will be between 0 and 1 according to how close 0 is to O and 6n+1. All other
angular nodes will have a desired value of zero.

When training on real images, the templates are chosen at random, starting from
any pixel in the image, and care is taken to avoid starting points which would result in
templates extending beyond the image boundary. This random template choosing
process maximizes the variety of templates, and forces nnl to recognize a portion of the
wake with varying widths in any position and orientation within the template. When
training on synthetic images, a new noise or wake template is constructed at each training
step, with a random position and orientation of the wake for wake-containing templates.

FINAL REPORT 100 Contract N0O0014-89-C-0257

When training on real or synthetic images, nnl is trained with equal frequency on wake
and noise templates.

3.2. The second neural network

The second neural network (nn2) is trained on the outputs from nnl for an entire
real or synthetic image. With real images, a different image is chosen for each training
trial. With synthetic images, a new image is generated for each trial. Then, each real or
synthetic image is fed into nnl in the testing mode. The templates are chosen in order
from the upper left to the lower right covering the entire section with no gaps, and they
are fed into nnl one at a time. The combined output of nnl for all the templates is then
fed into nn2. There is just one output for nn2 and its desired value is 1 if the image
includes a wake, and it is O if it only consists of noise.

3.3. Image enhancement techniques

Image enhancement methods applied to the original image or to the "reduced
template” image can improve the performance of the neural network and provide a clearer
picture of the wake for human observers. An iterative template enhancement technique
can be used to improve images of wake arms in the reduced template image. As shown
in Figure 2, the reduced template image produced by nnl can be enhanced through an
iterative scheme which updates each template according to the state of its neighboring
templates in the following manner: Let p be he probability that template i,j contains part
of the wake as predicted by nnl. Of the eight nearest neighboring templates of i,j,
examine only the two neighbors which are closest to the y direction with respect to i,j.
Let p+ and p- be the probabilities of the presence of a wake in these two neighboring
templates. Then, enhance the probability of the presence of a wake in i,j to p', where

p=p+p(-p(lp+-pl+ip--pl)/2,
The second term on the right is the enhancement of p, and is designed to have stable
points at p=0, p=1, and p+=p-=p. Thus, successive enhancements of the probability will

tend to converge to either extreme, 0 or 1, or when all three neighbors have equal
probabilities.

4. Results

4.1. Performance on real images with added noise

For each iteration in the training of nnl, a new template is chosen randomly from
a real image with a noise level r = 2.0. Then, nn2 is trained and tested cn wake and noise
sections of the real image with variable noise levels, r=1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. In
a more thorough study nnl can be trained on a range of noise levels.

FINAL REPORT 101 Contract N00014-89-C-0257

The fraction of wake and noise images missed as a function of the noise level r is
shown in Fig. 5. The neural netwcrk model outperforms the average performance of 5
persons at every noise level. Note that the neural network deiector did not miss any wake
or noise images when tested at or below a noise level of 1.5. At a noise level of 3.0
(example in Fig. 1b), the neural network correctly identifies between 80% and 85% of the
wake and noise images, and it performs well below this level with 75% correct at a noise
level of 3.5, and between 60% and 70% correct at a noise level of 4.0 as shown in Fig. 5.

r
e hyman

% misclassified

k] 2 3 4
noise leve|

Figure 5: Detection capability of the neural network model vs. the human eye as a function of the
noise level on real SAR images.

The single output of nn2 corresponds to the probability that the image section
being tested contains a wake. However, we are free to choose the cutoff probability p¢
according to our emphasis, and trade between the fraction cf the noise and wake sections
misclassified. The misclassification of wake and noise sections as a function of p¢ at a
noise level of 3.0 is shown in Fig. 6, where the tradeoff between false alarms and missed
wakes is evident as pg is varied from O to 1.

wake detection probability (%)

0 10 20 30 40 50 60
false alarm probability (%)

Figure 6: Performance of the network as a function of the cutoff p; on real images at a noise level
of 3.0.

4.2. Performance on synthetic images

With synthetic images, a new 256 x 256 wake or noise image is constructed for
each iteration of the training process. Since the synthetic images contain wakes in any

FINAL REPORT 102 Contract N0OOO14-89-C-0257

position and orientation and a range of opening angles, a neural network trained on these
images is capable of translationally and rotationally invariant wake detection and must be
robust with respect to opening angles of the wake. nnl is trained on images at one signal-
to-noise ratio (s/n = 20 dB), but nn2 is trained separately on a range of signal-to-noise
ratios, namely s/n = 15, 20, 25, and 30 dB.

Its performance is compared to the average performance of 5 persons on the same
images and is shown in Fig. 7. The neural network outperforms humans at the lower
signal-to-noise ratios, 15 and 20 dB, but not at the higher signal-to-noise ratios, 25 and 30
dB. This results from training nnl only on one signal-to-noise ratio, and 1t can be
improved by training nnl separately at each signal-to-noise level. However, in this study,
the emphasis was on demonstrating the network's detection capability at signal-to-noise
ratios below that of human detection capabilities.

50
b1 -~ uman
= 404 —C— Network
a
5
g 304
E
3
o
£
- 109
&
[} Y J .
10 15 20 25 30 35

Signal-to-Noise (dB)

Figure 7: Detection capability of the neural network model and the human eye on synthetic images as
a function of signal-to-noise ratio.

5. Conclusions

A neural network model for automated detection of wakes on the ocean surface in
SAR images has been developed. It can detect wakes in both real and synthetic images
which are beyond the detection capabilities of human vision. It has also proven to be
insensitive to rotations and translations of the wake and robust with respect to a range of
opening angles of the wake. The performance of the network has been measured as a
function of the signal-to-noise ratio in synthetic images and as a function of the noise
level which is related to the signal-to-noise ratio in real images. The tradeoff between
false negatives and false positives has been measured as a function of the threshold which
can be set to any desired value.

n,

FINAL REPORT 103 Contract N0O0014-89-C-0257

6. Appendix:

The Signal-to-Noise Ratio in an Image with Exponential Distribution of
Pixel Intensities
The pixel intensities in noisy SAR images are found to follow an exponential

distribution. In a "one-look" image, the probability that a particular pixel i will have an
intensity Ij is

p’(")z%e_"”' : pu(l,)= e ™"

for images which contain a signal or only noise, respectively. Isi 1s the local average

intensity in the neighborhood of the ith site in an image-containing portion, and Iy, is the
average pixel intensity over the noise only part of an image. For a "four-look" image,

440 _ 4‘ >
(1)=3ee ™™ p)= 5

All the above probabilities are normalized so that their integral over Ij from 0 to e is 1.

The probability that a particular set of intensities {Ij} will occur is the product of the
single site probabilities over the entire image:

pn{li}znipn(li) p:{]i}znip.v([i)‘

Since the SAR image used in this paper is a four-look image, we shall evaluate the signal-
to noise ratio for a four-look image. The average intensities over an ensemble of noise
and signal images are In and Isj which can be verified by integrating li over the
distributions. The average of Ijlj over an ensemble of noise images is

1) = [antp {1}
For i, (L1), = [didp, (1) dl1p,(1;)= 12
For i=j,), = [dLip.(1, =§13.

The standard deviation of the pixel intensities in pure noise images is

(’i’/),. = (1-‘>.<li). = —136.1

L

FINAL REPORT 104 Contract NOM0O14-89-C-0257

The signal-to-noise ratio is defined in terms of i, the log of the ratio of the signal
to noise probability distributions:

Y (e

The ensemble average of over the noise images and the signal images is

= o3](i o eet]

and the standard deviation of over the noise images is

The signal-to-noise ratio s/n is defined as

o, Y
i)
i \In [.ﬂ
which is identical except for the factor of 2 to the expression of s/n for one-look images.

N4

FINAL REPORT 105 Contract NO0014-89-C-0257

The Projection Neural Network:

Gregg D. Wilensky and Narbik Manukian

Logicon RDA
6053 W. Century Blvd.
Los Angles, California 90045

Abstract

We develop a new neural network model, the projection neural network, which overcomes three key
drawbacks of backpropagation-trained neural networks (BPNN): 1) long training times, 2) the large
number of nodes required 10 form closed regions for classification of high dimensional problems, and 3) the
lack of modularity. This network combines advantages of hypersphere classifiers, such as the restricted
Coulomb energy (RCE) network, radial basis function methods, and BPNN. It provides the ability 1o
initialize nodes to serve either as hyperplane separators or as spherical prototypes (radial basis functions)
followed by a modified gradient descent error minimization training of the network weights and thresholds
which adjusts the prototype positions and sizes and may convert closed prototype decision boundaries 10
open boundaries and vice versa. The network can provide orders of magnitude decrease in the required
training time over BPNN and a reduction in the number of required nodes. We describe the theory and give
example applications. A U.S. patent on this Projection Neural Network is pending.

1. Introduction

Neural networks (NN) have been applied with success to a wide range of pattern
classification and function fitting problems. The standard backpropagation training
algorithm?4, while successful for problems of moderate size, suffers from slow training
times, the potential to get stuck at local error minima, and the need for a large number of
nodes when applied to complicated problems. However, in problems for which it does
converge to a solution, it offers the advantage of ensuring error minimization. As a
consequence, when solving a classification problem, the network outputs will approach
the Bayes conditional probabilities, given a statistically representative set of training data.
On the other hand, there exist classification algorithms which train quickly but do not
guarantee minimization of the classification error. Examples of these are the hypersphere
classifiers, such as the reduced Coulomb energy network (RCE)25, the models of

23The development and theoretical parts of this research were supported by Logicon RDA IR&D funding,
and the applications were supported by DARPA/ONR contract N0O0014-8°C-0257. A U.S. patent for the
Logicon Projection Network™ has been allowed and is pending. This paper has been published in the
Inierational Joint Conference on Neural Networks, Volume I, 1992, pp 358-367.

24Rumelhart, D. E., & McClelland, J. L. Parallel Distributed Processing: Explorations in the Microstructure
of Cognition (Vol. 1,2), Cambridge, MA: MIT Press., 1986.
25 Reilly, D. L., Cooper, L. N., Elbaum, C. "A Neural Model for Category Learning". Biological

Cybemetics, v. 45, 1982, pgs. 35-41.

FINAL REPORT 106 Contract N0OOO14-89-C-0257

adaptive resonance theory (ART)26:27, and the Kohonen type networks28. In this paper
we present a neural network which combines the utility of both approaches.

The classification algorithms which provide fast training do so by placing
prototypes with closed decision boundaries around training data points and then adjusting
their positions and/or sizes. As an example, a hypersphere classifier such as RCE places
hyperspherical prototypes around training data points and adjusts their radii. Radial basis
function networks can provide fast training as well as error minimization29-303132 While
several methods of determining the size, position and amplitude of the radial basis
functions have been proposed they do not have the simplicity or computational efficiency
of backpropagation training33. In contrast, the projection network provides a means of
implementing radial basis functions with a uniform approach to learning these
parameters: backpropagation training of the weights and thresholds of a feedforward
network. This effectively leads to optimization of the prototypes' locations, sizes and
amplitudes. Furthermore, both closed decision regions (hyperspheres or hyperellipses)
and open ones (such as hyperplanes) are accommodated in the same network. Training of
the network parameters may convert closed decision regions to open ones and vice versa
in the process of minimizing the error.

Feedforward neural networks such as BPNN with at least one hidden layer of
sigmoidal nonlinearities are capable of approximating any mapping of a continuous
bounded function of N inputs into N" outputs34. They accomplish this by partitioning the
input space with hyperplanes whose positions and orientations are determined by the
weights and the thresholds of the hidden layer nodes. The nonlinear combination of such
hyperplanes can lead to partitioning of the irout space into regions bounded by
hyperplanes and curved surfaces, both closed and open. To form a closed region in N
dimensions requires at least N+/ hyperplanes. The more complex the classification
boundaries, the more regions will be needed (although the number is reduced somewhat
by sharing hyperplanes among regions). For large N this can lead to an excessively large
network. In contrast, the projection network can combine closed prototvpes with open
prototypes , and therefore requires only one node per closed region.

26Carpemcr, G. A. & Grossberg, S. "ART 2: Self-orgamization of Stable Category Recognition Codes for
Analog Input Pattern”. Applicd Optics v. 26, 1987, pgs. 4919-4930.

27Carpemer, G.. Grossberg, S., Rosen, D. "ART 2-A: an adaptive resonance algorithm for rapid calegory
learning and recognition”. UCNN 1991 II, 1991, pgs. 151-156.

28Kohonen, T. (1986). "Leaming Vector Quantization for Pattern Recognition”, Technical Report TKK-F -
AG601, Helsinki University of Technology.

29Broomhead, D. S. & Lowe, D. "Multivariable Functional Interpolation and Adaptive Networks".
Complex Systems, v. 2, 1988, pgs. 321-323.

30powelt, M. J. D. “Radial Basis Functions for Multivariable Interpolation: A Review.”. J. C. Mason and
M. G. Cox (Eds.), Algorithms for Approximation Clarendon Press, Oxford. 1987, pgs. 143-167.

3]Moody, J. & Darken, C. "Fast Learning in Networks of Locally Tuned Processing Units”. Neural
Computation v. 1(2), 1989, pgs. 281-294,

32poggio, T. & Girosi, F. "Networks for approximation and learning”. Proceedings of the IEEE, v. 78(9),
1990, pgs. 1481-1497.

33pineda, F. J., "Recurrent Backpropagation and the Dynamical Approach to Adaptive Neural
Computation”. Neural Computation, v. 1, 1989, pgs. 161-172,

34Cybenko, G. "Approximations by Superpositions of a “~gmoidal Function”, Mathematics of Control,
Signals and Systems, v. 2(4), 1989, pgs. 303-314.

——

FINAL REPORT 107 Contract NOOO14-89-C-0257 d

It is this ability to form closed prototypes with a single hidden node that allows
the projection network to be initialized rapidly to a good starting point which is already
close to a desirable error minimum. Any of a number of algorithms can be used for this
initialization; Kohonen learning, RCE, and ART are examples. Or prototypes may be
r placed around each training point. Once the network has beea initialized in this mnner,

a modified backpro- - tion training, which will be discussed in Section 2.2, is used to
adjust the network weights and thresholds to ensure error minimization. Because the
network begins near a good solution, one avoids the long training time which standard »
backpropagation would take to reach this point as well as the possibility of getting stuck

in local minima which might prevent one from reaching this point. As demonstrated in

Section 3, this may lead to orders of magnitude reduction in training time.

The projection network has the added attraction of modular.ty: One network can
be trained to recognize inputs of a set of classes and another can be trained to recngnize »
inputs of other classes or different members of the same classes. Then, the two networks
can be combined into a single network. Similarly, for function fitting applications, a
network trained to output the value of a function over some range of inputs can be
combined with one trained over a different range. In general, some additional training
after the combination will be required to optimize the network performance, but there is »
no need to completely retrain the combined network, as would be gencrally required by
conventional BPNN. This modularity is possible primarily because there is little or no
interference between prototypes on the intermediate layer, particularly between
prototypes of opposite classes, so that the addition of more prototypes does not
necessarily destroy the signal to the output nodes.

The extension of a standard neural network to produce the projection network is a
very simple one. The neural network inputs are projected onto a hypersphere in one
higher dimension and the input and weight vectors are confined to lie on this
hypersphere. A single hidden level node is now capable of forming either an open or a
closed region in the original input space, as will be shown in the following section. This
basic concept is not new. The need to normalize the input vector and the weight vector so
that their dot product is a measure of their closeness has been recognized for a long time.
Telfer and Casasent35 have used a projection onto a cylindrical hyperbola for
initialization of a network with no hidden layers. Saffrey and Thornton36 have applied
stereographic projection to the Upstart algorithm. What has not been recognized is that
by projecting the input vector onto a hypersphere in one higher dimension one can create ®
prototype nodes with closed or open classification surfaces all within the framework or g
backpropagation-trained feedforward neural network. In this way one achieves rapid
prototype formation through initialization and subsequent optimization through BP
training. Furthermore, in contrast to the projection used by Telfer and Casasent, the
projections illustrated in this paper allow formation of arbitrary size and position of the

prototypes. .
35Telfer, B. & Casasent, D. "Minimum-cost Ho-Kashyap Associative Processor for Piecewise- »
Hyperspherical Classification”. [JCNN 1992 II, pgs. 89-94.
36 Saffery, J. & Thomton, C. "Using Stereographic Projection as a Preprocessing Technique for Upstart™.
UCNN 1992 11, 1991, pgs. 441-446.

®

° ° ° ° ° e e e 8. @]

S edad b A A

FINAL REPORT 108 Contract N00014-89-C-0257

2. Theory

2.1 The Projection Neural Network

To construct the projection neural network, we project each N-dimensional input
vector x onto an (N+/)-dimensional input vector x’ subject to the constraint that Ix'l = R.
In other words, the new input vector x' is confined to lie on an (N+1)-dimensicnal
hypersphere of radius R, and is the "projection” of x onto this sphere. Primed vectors
refer to the (N+1)-dimensional projection of the unprimed, N-dimensional vectors. The
projected inputs serve as the inputs into a standard feedforward neural network with an
additional node in the input layer. There are a number of such projections, one example
of which is a perspective projection defined by »

C- R h x 2.1)
TP R N2 | |

where h is the distance between the origins of the N-dimensional space and the (N+1)- L
dimensional space and is a free parameter. R and h must be chosen in such a way so that

the inputs will project onto a good portion of the hypersphere and can be easily separated.

In other words, one must avoid projecting all the inputs into too small a portion of the

hypersphere. The first component of x’ in 2.1 is the component of the projected vector

along the extra dimension. The remaining components lie in the original N-dimensional »
space. Since x'is an (N+1)-dimensional vector, the weight vector w’which connects it

to any node in the first intermediate layer must also be an (N+/)-dimensional vector. In

addition, w' is also forced to lie on the (N+17)-dimensional hypersphere so that its

magnitude is always equal to the radius R :

Iw'| = R. (2.2) »

We illustrate this projection for 2-D inputs projected onto a 3-D sphere in Figure
1. The components of x* given above can be easily derived from Figure 1 using similar
triangles and the Pythagorean theorem. This projection describes a mapping from the
plane to a sphere which is carried out by drawing the line determined by the origin (the »
center of the sphere) and any point on the plane. The intersection of this line with the
sphere is the projection of that point onto the sphere. The projection from the sphere
back onto the plane maps circles on the sphere onto conic sections (circles, ellipses,
hyperbola or lines) on the plane, depending on the size and location of the circle. We will
use this perspective projection in the following discussion and the applications.

<

FINAL REPORT 109 Contract N00014-89-C-0257

ve

Figure 1. The projection transformation and the formation of boundary surfaces

x is the input vector in the original N-D space and x' is the input vector in the
projected (N+1)-D space and lies on the hypersphere. Note that for large v the decision
boundary is a circle on this sphere, and its projection back onto the planc is an ellipse.
For v=0, the decision boundary is a great circle and its projection back onto the plane is a
line.

The reason for adding the extra dimension to the inputs before normalization is to
preserve all the information contained in the input vector, particularly its overall
magnitude. In contrast, a simple normalization of x would confine the inputs to a
hypersphere, but it would lose potentially valuable information contained in the
magnitude of each input. This can be important if the radial direction contains important
discriminatory information. In addition, such a scheme would not allow sufficient
flexibility in the choice of the shape of a prototype's decision surface.

An alternate projection, described by the following formula, maps circles on the
sphere to circles on the plane for the example of 2-D inputs:

1-(x/2h) x/h
14+(x/2hpP ° 1+(xI2hP |

(2.3)

When h is chosen to be R/2 this becomes the well known stereographic projection.

To demonstrate how projecting the input and weight vectors to N+/ dimensions
allows us to draw hyperspheres or hyperplanes as decision boundaries, we note that the
input to any intermediate level node is

&

FINAL REPORT 110 Contract N0O0014-89-C-0257

w'x'-n (2.4)

where v is the threshold for that node. The output of the node is a nonlinear function of

1
this argument. It is common to use the so-called sigmoidal function: o(§) = T+e%

which monotonically increases from 0 when the argument is -co to 1 when the argument
is +oo,

Because o provides a one-to-one mapping, the nodal outputs have a constant
value when the nodal inputs have a constant value. For example, an intermediate node
has an activation value of 1/2 when the input to that node is 0. For a given nodal
activation value, say 172, there is a corresponding surface in the input space which is an
effective decision surface; input vectors which lie on one side of this surface will produce
activations less than 1/2 and input vectors on the other side will produce activations
greater than 12. In the original input space, the surface is a hyperplane described by

w-X -V = constant. 2.5)

The constant is 0 when the decision surface is chosen to correspond to an activation of 172
. For a given activation level and hence a given value of the constant, the threshold
determines the location of the hyperplane. With the constant chosen to be 0, the
threshold is proportional to the distance of the hyperplane from the origin.

In N+1 dimensions both w’ and x’ lie on a hypersphere of radius R, and therefore
the decision surface is described by

w'x'-v =R%cos@ —v = 0, (2.6)

which is the equation of a hypersphere in N-dimensions (a circle on the 3-D sphere shown
in Fig.1). The geometrical shape of its projection back onto the N-dimensional input
space is determined by the choice of v: It is an ellipsoid or hypersphere if the surface is
contained within the range of the N-dimensional input space and it is a hyperboloid or
hyperplane if the surface extends beyond the limits of this snrace as shown in Fig. 1. If v
=0, w'-x" =0, the weight vector is perpendicular to the input vector, and the decision
surface is a great circle of radius R on the (N+1)-dimensional hypersphere (see Fig. 1). Its
projection back onto the N-dimensional space is an (N-1)-dimensional hyperplane (also

shown in Fig. 1). If [W/R| > R, no solution exists on the hypersphere. At V/R = R, the

surface is a point and all points in space lie outside or on the boundary of the decision
surface, and at V/R = -R, all points lie on or inside the decision surface.

Thus, the projection network has the option to choose and the ability to use either
hyperplanes or hyperspherical prototypes or both for the hidden nodes as is deemed
convenient or conducive to the solution of any paiticular problem, whereas standard
classifiers use one or the other (e.g. standard BPNN uses only hyperplanes and RCE uses
only hyperspheres).

o
\3.1 \)I

e

o
i@

f

FINAL REPORT 111 Contract N0O0O14-89-C-0257

2.2. Initialization of Weights and Thresholds

Next, we will show that the projection operation allows us to make a good guess
of the initial settings of the weights and thresholds. We note from equation 2.5 that when
the inputs and weights are confined to the (N+17)-dimensional hypersphere, the maximum
possible value of the input to any hidden layer node occurs when w' = x’ for any given
threshold value. Therefore, if the weight vector w’ of a node in the hidden layer is set
equal to some input x’ of class c,

w =x', Q.7

then the output of that node will be a maximum when the input is x* . If the decision
boundary is chosen to be a hypersphere, then that node becomes a prototype hypersphere
of class ¢ with a radius v, designed to fire maximally when x’ is the input. The radius v
of the prototype can be set so that its projection back onto the original space is some
desired closed or open region, and this initialization is often crucial in reducing the
training time of the network. Examples of such initializations of the thresholds are shown
in Appendix A.

With a sufficient number of such hyperspherical prototypes in the hidden layer
corresponding to representative examples of input vectors of each class, the input space
can be covered and classified with hyperspheres in a manner similar to an RCE network.
Clearly, this initial setting of the weight ~*ors is much better than a random guess and
can be very close to a desirable minimum o1 .. e error. The subsequent training process
which corresponds to the translation, expansion and shrinking of hyperspheres will
further reduce the error, and through the modified BP gradient descent technique
discussed in section 2.3, the error in the outputs can be minimized.

If the desired decision surface is a hyperplane in the original input space, (v = 0),
then the weight vectors can be initially set so that the hyperplane crosses the input point.
This ensures that the decision boundary will lie in an appropriate part of the original input
space and is far more likely to be near the optimum position and orientation than a
randomly chosen hyperplane, particularly in a high dimensional space.

So far, we have only applied the projection to the input layer nodes and set the
first layer weights and thresholds. However, the projection operation need not be
restricted to the input layer alone; it can be applied to any layer of the network by adding
an extra node to that layer and transforming the nodal values so that they correspond to a
projection onto a hypersphere in one higher dimension. Thus, the projection procedure
can be repeated on any hidden layer of a multi-layer network in exactly the same manner
as performed on the input layer. As an example application, for image recognition
problems the first layer of hidden nodes in a network may be trained to form prototypes
which recognize simple features such as edges or lines, and the next hidden layer of
nodes may be trained to form prototypes of simple images based on the lower level
features. The weights and thresholds of every projected layer can be initialized in the
same manner as the first layer and they are trained with the modified backpropagation
algorithm discussed in section 2.3.

a -

B,

FINAL REPORT 112 Contract N00014-89-C-0257

If an appropriate set of prototypes are formed on the last hidden layer of the
network, then the weights from this layer to the output layer and the thresholds of the
output layer should also be initialized in order to reduce the traming time. Fortunately, it
is usually easy to construct a good set of initial values for the highest level weights and
thresholds in a manner similar to RCE networks2. For classification problems, each
output node representing a particular class will be connected to all the prototype nodes of
that class in the hidden layer with a weight of +1 (or some other positive value), and it
will be connected to prototype nodes of other classes with a zero or nearly zero weight.
(Sometimes it may be desirable to use a negative weight for prototypes of other classes to
suppress their contribution.) In general, the thresholds for each output class node should
be set high enough to be above the level received by each node when inputs of the other
classes are introduced. Typically, this is just above zero, but in some cases, especially if
there is much overlap between classes, the thresholds may need to be higher. Similarly,
for a function fitting problem, the weights can be set to the value of the function at the
position of the corresponding prototype while the thresholds are set to 0 and the
sigmoidal function can be omitted for the output nodes. With these initial settings of the
weights and thresholds, the network training time can be reduced by orders of magnitude
over training times of conventional BPNN as we will demonstrate for selected
applications in section 3.

2.3. Training the Projected Weights; Gradient Descent on the
Hypersphere

The backpropagation training algorithm minimizes the error in the output vectors
by moving each weight vector in the direction of maximum error decrease, that is the
direction opposite the gradient of the error with respect to the weights. However, in order
to keep the weight vectors on the hypersphere, the standard backpropagation training
algorithm must be modified: the weight vectors must be moved in the direction of
maximum error decrease tangent to the hypersphere surface:

ow' = %x(%x aVS) , 2.8)

where € is the error in the outputs (the mean squared difference of network outputs and
desired outputs, for example), Ve is the gradient with respect to the weight vector w, and
o is the gain. However, since finite steps must be taken on any computer, this dw will
slightly increase the radius of the weight vector. In order to prevent repeated iterations
from moving the vectors off the hypersphere, the weights must be normalized to have a
magnitude R, which is . ~complished by the following replacement:

w'+Ow’
lw'+dw]

w — R (2.9)

Although the above prescription is intuitively clear, a more mathematically rigorous
treatment is provided by expressing the weight vector w’ in a form that automatically
guarantees a constant magnitude by the introduction of an unconstrained weight vector
W’

TRATTY O Emn T

Y

FINAL REPORT 113 Contract N0O0014-89-C-0257
w =R W and thus |w] =R. (2.10)
[wl

Minimizing the network output error with respect to the new unconstrained weight vector
W’ reproduces the results in Equations 2.9 and 2.10. Note that the threshold v is trained
using standard backpropagation.

3. Applications

3.1 Simple 2-Dimensional Classification Problem

To demonstrate the advantages of the projection network, we apply it to selected
problems. The first example is a simple two-dimensional problem which illustrates two
advantages of this network, namely its ability to reduce the required number of hidden
layer nodes by using hyperspheres or hyperplanes and its ability to reduce the training
time through a good initialization of the weights and thresholds. The problem consists of
two classes of points as shown in Figure 2, where the class 1 points are in the shaded
regions and the class 2 points are in the white region. A hyperplane classifier such as
BPNN will need three lines to enclose the circle and an additional line to separate the
region at the right, whereas a hypersphere classifier may need several circles to define the
linear boundary especially if the circles are not allowed to expand as in an RCE network.
It will need only one circular prototype to enclose the circle provided that the prototype is
allowed to shrink and expand during training; otherwise it will again need more than one
prototype. The projection network needs only two prototypes and therefore only two
‘ntermediate layer nodes to classify the circular and rectangular regions.

A standard BPNN with 4 hidden layer nodes is trained on this data, with 2 input
nodes corresponding to the x and y coordinates of the input point, and a single output
node which gives the class of the input point. At the beginning of the training process,
the BPNN tries to classify the inputs with just a single hyperplane as shown in Fig. 2a.
Between 5,000 and 50,000 trials it adjusts this single hyperplane for optimal results and
the fraction misclassified varies from 40% to 50%. This is the first local minimum which
delays the training process. At 55,000 trials, the network brings in a second hyperplane
as shown in Figure 2b, and between 55,000 and 90,000 trials it adjusts both hyperplanes
to obtain the best results. This corresponds to the second local minimum visited by the
network. At 95,000 trials, a third hyperplane ans* :hortly thereafter the fourth hyperplane
is engaged and adjusted until the final solution is reached as shown in Fig. 2c. The error
now drops from 27% to 5%. This tendency of BPNN to attempt to solve a problem by
sequentially engaging one hyperplane at a time is largely responsible for the delays
caused by local minima for this problem and for large classes of proble.ns.

However, the projected network can immediately engage all the hidden layer
nodes as prototypes. To demonstrate this, the projected network is trained on the same
data with only 2 hidden layer nodes. Its initial solution already uses both hyperspheres

FINAL REPORT 114 Contract N00014-89-C-0257

(two circles) since they are ini ially set equal to input points chosen at random as shown
in Fig. 2d. The initial fraction misclassified without training is 26.8%. Between 0 and
10,000 trials, it adjusts these twc prototypes (see Fig. 2e); one circle is expanded to match
the circular gray region, and the other is expanded until it approaches a line coinciding
with the linear boundary (v approaches zero). At 10,000 trials, the decision boundaries
closely match the class boundari¢s, and the fraction of misclassified points drops to 5.6%
(see Fig. 2f).

2a 2d
2b 2e
2c 2f

Figure 2. Illustration of formation of neural network solution for a two-dimensional problem. 2a. t=5000.
2b. t=55,000. 2c. t=95,000. Backpropagation-trained network learns by bringing in one
hyperplane at a time. 2d. t=0. 2e. t=1,000. 2f. t=10,000. Projection network initially sets all

prototypes and rapidly optimizes their position and size.

3.2 Optical Character Recognition

To illustrate these same advantages of the projection network on a more practical
problem and to demonstrate its modular nature, we apply it to a character recognition
problem which consists of the 26 letters of the alphabet on a 7 by 10 grid of pixels with
gray scale values ranging from -0.5 to 0.5. Each character is allowed to translate by plus
or minus one pixel in the x direction for a total of 3 possible positions of each character
on the grid. Also, to each pixel gray value we add noise of amplitude + or -0.7 times a
random number between 0 and 1, and then truncate back to the range -0.5 to 0.5 if the
addition of noise takes the pixel value beyond this range. As shown in Fig. 3a below,
these translations, coupled with the high level of noise, make the characters difficult to
recognize even with the human eye.

el 'iMaaa LN

N @ T

f

FINAL REPORT

standard BP net
projection net

S0

%40
30

3

E

p 20

s]

£,

: _
0 Juim gy

0 20 40

epochs trained (5

60 80 100
00 images/epoch)

3b.

115

100

2 &8 8 8

% letters misciassified

[¢]

Contract N0O0O14-89-C-0257

maeessssnnee]

0

20 40 60 80 100

epochs treined (500 images/epoch)

3c.

Fig. 3. Comparison of backpropagation and projection networks for character recognition.
3a. Example characters. 3b. Performance on test set with no translation.
3c. Performance on test set with * 1 pixel translation along x.

As shown in Figures 3b and 3c the slow training time for the standard
backpropagation trained net is greatly reduced by the projection net which begins at a
good solution after one pass through the training data set (indicated as epoch O on the
graphs). The standard net had 70 input nodes, 50 intermediate level nodes, and 26 output
nodes for the results shown in Figure 3b in which the characters are not translated. With
translation allowed the number of intermediate level nodes was increased to 100. The
corresponding projection networks simply had one additional input node.

The advantage of the modular nature of the projection network is demonstrated by
combining two separately trained networks. We trained one network with 124
intermediate level nodes and 12 output nodes to recognize the letters A through L and
another network with 126 intermediate level nodes and 14 output nodes to recognize M
through Z. Translations of *1 pixel along both x and y were allowed. After 5,000 trials,
the first network misclassified 3.4% of the characters and the second network
misclassified 1.2% of the characters. After combining and without training, the average
misclassification error was 6.9%. After 6,000 training trials, the fraction missed dropped
to 3.1%, and after 13,000 trials, it was 2.9%. The important result of this experiment is
that the combined network showed a low initial error, demonstrating that the projection
network can be nearly modular, and that the combination of networks in real applications
is practical.

3.3 Handwritten Word Recognition

To demonstrate the ability of the projection network to rapidly solve large scale
problems, we applied it to handwritten word recognition. A sample of the handwriting
used is shown in Figure 4. The inputs consisted of thirty images of handwritten words
written by the same individual and digitized into 60 x 340 pixels. Thus the projected

FINAL REPORT 116 Contract N0O0014-89-C-0257

neural net had 20,400 + 1 input nodes and 30 output nodes corresponding to the 30
different words. With no noise added, the initial setting of the weights and thresholds is

sufficient to classify all 30 training images perfectly without additional training. This is
shown in Figure 5 which contrasts this single pass initialization with the slowness of a
standard BPNN. The projection network memorizes all 30 words after a single pass
through the training set. This is a remarkable performance for such a large dimensional
problem. Note that this example is not meant to demonstrate a network capable of word
recognition. Indeed, such a network generalizes poorly on images it has not trained on.
No attempt was made to train the network to be insensitive to translation, scale changes
or local distortions which are typical of handwriting. Such insensitivity is best built in by
analyzing the image with local overlapping regions each of which is trained to be
insensitive to small distortions. What this experiment does demonstrate, however, is the
feasibility of rapidly training a neural network to learn a problem of large dimensions.

Figure 4. Training samples of handwritten words.

100

R Standard Bp net
80F —m— Tprojection net

609 i
a04 %

20+ L P
3

g
O ierreppm—p——p————————

S 20 40 60 80 100 120 140 160
epochs trained (100 images/epoch)

9 words misclassified
on training data set
S

Figure 5. Comparison of backpropagation vs. projection network training for handwritten word
identification. Results refer to the training data only.

4. Summary

We have developed a new neural network by projecting the input vector of a
standard feedforward neural network onto a hypersphere in one higher dimension. The
network is trained with a modification of backpropagation algorithm. We have
demonstrated through theoretical discussions and practical applications that the network
has several advantages over traditional BPNN: By allowing a good initial setting of the
weights and thresholds, the projection network can save orders of magnitude in the

LanN el s

4

—f % -

FINAL REPORT 117 Contract N00014-89-C-0257

training time. It is more efficient in its use of intermediate layer nodes, since it can use
either hyperspheres or hyperplanes as decision boundaries wherever appropriate. It is
also modular in many applications; two or more independently trained networks can be
combined and then trained for a relatively short time with good results. Finally, the
projection operation is not restricted to the input layer but can be performed on any layer
of a multi-layer network as required, thus further enhancing the network capability and
decreasing the learning time.

S. Appendix

Shapes of Classification Regions and Network Initialization

The projection of the hyperspherical decision boundary on the (N+/)-dimensional
hypersphere back onto the original N-dimensional space can produce open or closed
quadratic surfaces as shown in Fig. 1 for N=2. To show this, begin with the projection
defined by

x'=(xo, x'1) =R h = (A1)
IR (=P ey |

where x'n and x’; are components of the projected vector along the additional axis,
labeled '0', and the original space respectively. Similarly, the (N+17)-dimensional weight
vector w' can be expressed in terms of wp and w'] :

w = (w'o , w'_L)

(A2)
The activation of a hidden level node is a nonlinear function of the inner product of the
projected input vector with the nodal weight vector and is thus a constant when the inner

product is constant. If this constant is set to zero, then the decision surface of any hidden
node is defined by

v
w'x'-v =0 , which implies woh+w'lx = gNH+xX. (A.3)

Since the choice of coordinates in the N-dimensional space is arbitrary, we can simplify
this expression by choosing x; along w’; without any loss of generality:

v
woh+w') x; = VR +x2, wherex?2= x2+x;2,and w') = |[w')]. (A4)
R il

Here x is the projection of x in a direction orthogonal to the first axis and should not to
be confused with x'; defined in A.1. This can be cast into the standard form for the
equation of an ellipse:

X,
°
+*
8,
°
F
o
e
°
° o
)
®
»
»
»
s o

FOPTCSOVSRPE - SRV

FINAL REPORT 118 Contract N0OO14-89-C-0257
2 .
o+ Q"—a;‘f =1, (A5)

where a and b are the major and minor axes of the ellipse respectively, and are given by

R2/v)%1
b=nh _ (Rt = b (A.6)

RO N el

and the center of the ellipse is located along the first axis with the coordinate value
wowy R2? h/V'2
X =

B 1-(wlR/v)2'

As long as the quantities within the square roots are positive, the equation describes a
hyperellipse (a closed surface). If one of the quantities is negative the equation describes
an open hyperbolic surface. In the special case in which the threshold is O the equation is
that of a hyperplane. If one desires to set a prototype node whose decision boundary is an
ellipse centered around an input point x with a minor axis of b, then the weight vector is
set as

(A7)

(A8)

R = (b2 +h2)lh x
TN+ (2en22R2 N+ (b2+h2)2/h2) ’

and the threshold is set equal to

) _\/ x2 + b2+ K
V=R x2 + (2+h?PIn? '
(A9)

which is obtained from equations A.6 and A.7. Alternatively, the weight vector can be
set equal to the projected input vector to describe a prototype which responds maximally
to this input point. The center of the ellipse, x,, is then offset from the input point:

x; = x(1 +b2H2). (A.10)

atadnd ta

o

